Abstract

Abstract

We describe a novel technique based on stimulated Brillouin scattering for propagating fast light (signal advancement) with low distortion in optical fibers. The essence of the technique relies on the presence of two separate gain resonances in the Brillouin gain spectrum generated by cascading two different fiber segments showing distinct Brillouin shifts. It can be shown that in between these two gain spectra, a reduced group index can be obtained. To further optimize our results, we broadened the pump spectrum by introducing a modulation of the current driving the pump laser to achieve a delay-bandwidth product close to the optimum conditions. This scheme eliminates the need of an external optical modulator and offers the advantage of a much reduced signal distortion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. G. Herráez, L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  2. Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
    [CrossRef] [PubMed]
  3. M. G. Herráez, K. Y. Song, L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113-1-081113-3 (2005).
  4. H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
    [CrossRef]
  5. R. M. Camacho, M. V. Pack, and J. C. Howell, "Low-distortion slow light using two absorption resonances", Phys. Rev. A 73,063812 (2003).
    [CrossRef]
  6. K. Y. Song, M. Gonzalez Herráez and L. Thévenaz, "Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers," Opt. Express 13, 9758-9765 (2005).
    [CrossRef]
  7. Z. Zhu and D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Express 14, 7238-7245 (2006)
    [CrossRef] [PubMed]
  8. S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, "Zero-gain slow & fast light propagation in an optical fiber," Opt. Express 14, 10684-10692 (2006).
    [CrossRef] [PubMed]
  9. N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," J. Lightwave Technol. 11, 1518-1522 (1993)
    [CrossRef]
  10. M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997)
    [CrossRef]
  11. Agrawal, G.P. , 1995, Nonlinear Fiber Optics (Academic press, San Diego, CA)
  12. M. Gonzalez Herráez, K. Y. Song and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2005)
    [CrossRef]
  13. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS Slow Light in an Optical Fiber," J. Lightwave Technol. 25, 201-206 (2007)
    [CrossRef]
  14. K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. 32, 217-219 (2007)
    [CrossRef] [PubMed]
  15. K.S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005)
    [CrossRef] [PubMed]
  16. K.Y. Song, K.S. Abedin, K. Hotate, M. Gonzalez-Herraez and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006)
    [CrossRef] [PubMed]

2007

2006

2005

2003

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, "Low-distortion slow light using two absorption resonances", Phys. Rev. A 73,063812 (2003).
[CrossRef]

1997

M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997)
[CrossRef]

1993

N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," J. Lightwave Technol. 11, 1518-1522 (1993)
[CrossRef]

Abedin, K.S.

Bigelow, M.S.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Boyd, R.W.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Camacho, R. M.

R. M. Camacho, M. V. Pack, and J. C. Howell, "Low-distortion slow light using two absorption resonances", Phys. Rev. A 73,063812 (2003).
[CrossRef]

Chin, S.

Dawes, A. M. C.

Fukuda, Y.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Furue, S.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Gaeta, A.L.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Gauthier, D. J.

Gauthier, D.J.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Gonzalez Herráez, M.

Gonzalez-Herraez, M.

Hayami, K.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Herráez, M. G.

M. G. Herráez, K. Y. Song, L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113-1-081113-3 (2005).

K. Y. Song, M. G. Herráez, L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
[CrossRef] [PubMed]

Hotate, K.

Howell, J. C.

R. M. Camacho, M. V. Pack, and J. C. Howell, "Low-distortion slow light using two absorption resonances", Phys. Rev. A 73,063812 (2003).
[CrossRef]

Imai, T.

N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," J. Lightwave Technol. 11, 1518-1522 (1993)
[CrossRef]

Kohmoto, T.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Kunitomo, M.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Nakayama, K.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997)
[CrossRef]

Niwa, H.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Okawachi, Y.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Pack, M. V.

R. M. Camacho, M. V. Pack, and J. C. Howell, "Low-distortion slow light using two absorption resonances", Phys. Rev. A 73,063812 (2003).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997)
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Sharping, J.E.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Song, K. Y.

Song, K.Y.

Tanaka, H.

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

Thevenaz, L.

M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997)
[CrossRef]

Thévenaz, L.

Willner, A. E.

Yoshizawa, N.

N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," J. Lightwave Technol. 11, 1518-1522 (1993)
[CrossRef]

Zhang, L.

Zhu, Z.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS Slow Light in an Optical Fiber," J. Lightwave Technol. 25, 201-206 (2007)
[CrossRef]

Z. Zhu and D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Express 14, 7238-7245 (2006)
[CrossRef] [PubMed]

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. G. Herráez, K. Y. Song, L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113-1-081113-3 (2005).

J. Lightwave Technol.

N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," J. Lightwave Technol. 11, 1518-1522 (1993)
[CrossRef]

M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997)
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS Slow Light in an Optical Fiber," J. Lightwave Technol. 25, 201-206 (2007)
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M.  Kunitomo and Y. Fukuda, "Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor," Phys. Rev. A 68, 053801 (2003).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, "Low-distortion slow light using two absorption resonances", Phys. Rev. A 73,063812 (2003).
[CrossRef]

Phys. Rev. Lett.

Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd and A.L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005)
[CrossRef] [PubMed]

Other

Agrawal, G.P. , 1995, Nonlinear Fiber Optics (Academic press, San Diego, CA)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of the single-pumped passive configuration to generate a SBS gain or loss doublet. A partial overlap of the gain spectra can be created by using a spectrally broadened pump, as shown on the bottom situation.

Fig. 2.
Fig. 2.

Experimental setup to realize a fast light propagation with low distortion, by appending two optical fibers showing different Brillouin shift and by using a spectrally broadened pump laser. EDFA: erbium doped fiber amplifier, VOA: variable attenuator; EOM: electro-optic modulator, PC: polarization controller

Fig. 3.
Fig. 3.

The spectral profiles of gain-doublets as a function of frequency for different spectral widths of the pump. Pump power is kept constant.

Fig. 4.
Fig. 4.

The non-normalized traces of the pulsed probe signal with different pump powers, showing clear advancements and the absence of visible distortion.

Fig. 5.
Fig. 5.

Time advancements for a 1 MHz sine modulated signal as a function of the pump power in the optimum delay-bandwidth conditions (resonance separation: 120 MHz, effective resonance width 40 MHz).

Fig. 6.
Fig. 6.

Temporal delays for 1 MHz sine modulated signal with respect to the pump power after propagating through two different optical fibers. Insert shows the Brillouin loss doublet created in the Anti-Stokes regime.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d I s d z = g B ( z , v ) I p I s α I s
g B ( z , v ) = g B 1 1 2 j [ ( v v B ( z ) ) Δ v B ( z ) ]
I P ( z ) = I o exp ( ( L α ) z )
I s ( L ) = I s ( 0 ) exp ( I 0 o L [ g B ( z , v ) exp ( α z ) α ] d z )
I s ( L ) = I s ( 0 ) exp ( α ( L 1 + L 2 ) ) exp ( I 0 [ g B 2 ( v 2 ) L 2 eff + g B 1 ( v 1 ) L 1 eff exp ( α L 2 ) ] )
g ( Δ v ) = P ( Δ v ) g B ( Δ v )

Metrics