Abstract

Abstract

The investigation of the light-induced changes of refractive index in a LiNbO3: Fe sample in case of strip-like illumination is presented in the contribution. The changes of the refractive index are visualized by interferograms of the sample obtained for various orientation of the illuminated strip and various polarization of the light used during interferogram creation. The investigation shows that character of the dependences of the refractive index on the coordinate perpendicular to the illuminated strip is different for different strip orientation. It indicates the possibility that for different orientation of gradient of the illumination the different mechanisms are responsible for changes of the refractive index.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Gao and R. Kostuk, "Cross - talk noise and storage capacity of holographic memories with a LiNbO3 crystal in the open - circuit condition," Appl. Opt. 37, 929-936 (1998).
    [CrossRef]
  2. J. Ashley,  et al., "Holographic data storage," IBM J. Res. Develop. 44, 341-368 (2000).
    [CrossRef]
  3. A. K. Zajtsev, S. H. Lin, and K. Y. Hsu, "Sidelobe suppression of spectral response in holographic optical filter," Opt. Commun. 190, 103-108 (2001).
    [CrossRef]
  4. S.-F. Chen, C. S. Wu, and C.-C. Sun, "Design for a high dense wavelength division multiplexer based on volume holographic gratings," Opt. Eng. 43, 2028 - 2033 (2004).
    [CrossRef]
  5. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, "Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals," Opt. Lett. 28, 1433-1435 (2003).
    [CrossRef] [PubMed]
  6. G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
    [CrossRef]
  7. M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro, "Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography," Opt. Express 15, 8243-8251 (2007).
    [CrossRef] [PubMed]
  8. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
    [CrossRef]
  9. F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
    [CrossRef]
  10. A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
    [CrossRef]
  11. B. I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, "On microscopic description of photorefractive phenomena," Appl. Phys. B 68, 1013-1020 (1999).
    [CrossRef]
  12. I. Turek and N. Tarjányi, "Interference imaging of photorefractive record in thin sample of LiNbO3 crystal," Proc. SPIE 5945, 59450J-1 (2005).
  13. I. Turek and N. Tarjányi, "The photorefractive effect in LiNbO3 crystals," 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609, 660906 (2007).
  14. P. Yeh, Introduction to photorefractive nonlinear optics, (John Wiley & Sons, Inc. New York, 1993) p. 27.
  15. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, United Kingdom, 2002), pp. 799-808.
  16. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
    [CrossRef]

2007 (2)

M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro, "Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography," Opt. Express 15, 8243-8251 (2007).
[CrossRef] [PubMed]

I. Turek and N. Tarjányi, "The photorefractive effect in LiNbO3 crystals," 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609, 660906 (2007).

2006 (1)

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

2005 (1)

I. Turek and N. Tarjányi, "Interference imaging of photorefractive record in thin sample of LiNbO3 crystal," Proc. SPIE 5945, 59450J-1 (2005).

2004 (1)

S.-F. Chen, C. S. Wu, and C.-C. Sun, "Design for a high dense wavelength division multiplexer based on volume holographic gratings," Opt. Eng. 43, 2028 - 2033 (2004).
[CrossRef]

2003 (2)

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, "Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals," Opt. Lett. 28, 1433-1435 (2003).
[CrossRef] [PubMed]

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

2001 (1)

A. K. Zajtsev, S. H. Lin, and K. Y. Hsu, "Sidelobe suppression of spectral response in holographic optical filter," Opt. Commun. 190, 103-108 (2001).
[CrossRef]

2000 (1)

J. Ashley,  et al., "Holographic data storage," IBM J. Res. Develop. 44, 341-368 (2000).
[CrossRef]

1999 (1)

B. I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, "On microscopic description of photorefractive phenomena," Appl. Phys. B 68, 1013-1020 (1999).
[CrossRef]

1998 (1)

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

1969 (1)

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Agulló-López, F.

B. I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, "On microscopic description of photorefractive phenomena," Appl. Phys. B 68, 1013-1020 (1999).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Ashley, J.

J. Ashley,  et al., "Holographic data storage," IBM J. Res. Develop. 44, 341-368 (2000).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Carrascosa, M.

B. I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, "On microscopic description of photorefractive phenomena," Appl. Phys. B 68, 1013-1020 (1999).
[CrossRef]

Chauvet, M.

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Chen, F. S.

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
[CrossRef]

Chen, S.-F.

S.-F. Chen, C. S. Wu, and C.-C. Sun, "Design for a high dense wavelength division multiplexer based on volume holographic gratings," Opt. Eng. 43, 2028 - 2033 (2004).
[CrossRef]

Couton, G.

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

de Angelis, M.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

De Natale, P.

De Nicola, S.

M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro, "Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography," Opt. Express 15, 8243-8251 (2007).
[CrossRef] [PubMed]

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Eason, R. W.

Ferraro, P.

M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro, "Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography," Opt. Express 15, 8243-8251 (2007).
[CrossRef] [PubMed]

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

Finizio, A.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

Gao, Q.

Gawith, C. B. E.

Giust, R.

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Hsu, K. Y.

A. K. Zajtsev, S. H. Lin, and K. Y. Hsu, "Sidelobe suppression of spectral response in holographic optical filter," Opt. Commun. 190, 103-108 (2001).
[CrossRef]

Kostuk, R.

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Lin, S. H.

A. K. Zajtsev, S. H. Lin, and K. Y. Hsu, "Sidelobe suppression of spectral response in holographic optical filter," Opt. Commun. 190, 103-108 (2001).
[CrossRef]

Mailis, S.

Maillotte, H.

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Miccio, L.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Paturzo, M.

Pelli, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

Pierattini, G.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

Righini, G.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

Riziotis, C.

Sebastiani, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

Smith, P. G. R.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Solymar, L.

B. I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, "On microscopic description of photorefractive phenomena," Appl. Phys. B 68, 1013-1020 (1999).
[CrossRef]

Sturman, B. I.

B. I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, "On microscopic description of photorefractive phenomena," Appl. Phys. B 68, 1013-1020 (1999).
[CrossRef]

Sun, C.-C.

S.-F. Chen, C. S. Wu, and C.-C. Sun, "Design for a high dense wavelength division multiplexer based on volume holographic gratings," Opt. Eng. 43, 2028 - 2033 (2004).
[CrossRef]

Tarjányi, N.

I. Turek and N. Tarjányi, "The photorefractive effect in LiNbO3 crystals," 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609, 660906 (2007).

I. Turek and N. Tarjányi, "Interference imaging of photorefractive record in thin sample of LiNbO3 crystal," Proc. SPIE 5945, 59450J-1 (2005).

Turek, I.

I. Turek and N. Tarjányi, "The photorefractive effect in LiNbO3 crystals," 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609, 660906 (2007).

I. Turek and N. Tarjányi, "Interference imaging of photorefractive record in thin sample of LiNbO3 crystal," Proc. SPIE 5945, 59450J-1 (2005).

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Wellington, I. T.

Wu, C. S.

S.-F. Chen, C. S. Wu, and C.-C. Sun, "Design for a high dense wavelength division multiplexer based on volume holographic gratings," Opt. Eng. 43, 2028 - 2033 (2004).
[CrossRef]

Zajtsev, A. K.

A. K. Zajtsev, S. H. Lin, and K. Y. Hsu, "Sidelobe suppression of spectral response in holographic optical filter," Opt. Commun. 190, 103-108 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

B. I. Sturman, F. Agulló-López, M. Carrascosa, and L. Solymar, "On microscopic description of photorefractive phenomena," Appl. Phys. B 68, 1013-1020 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, "Digital-holography refractive-index-profile measurement of phase gratings," Appl. Phys. Lett. 88, 111114-111116 (2006).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically - induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 -74 (1966).
[CrossRef]

Electron. Lett. (1)

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

IBM J. Res. Develop. (1)

J. Ashley,  et al., "Holographic data storage," IBM J. Res. Develop. 44, 341-368 (2000).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
[CrossRef]

Opt. Commun. (1)

A. K. Zajtsev, S. H. Lin, and K. Y. Hsu, "Sidelobe suppression of spectral response in holographic optical filter," Opt. Commun. 190, 103-108 (2001).
[CrossRef]

Opt. Eng. (1)

S.-F. Chen, C. S. Wu, and C.-C. Sun, "Design for a high dense wavelength division multiplexer based on volume holographic gratings," Opt. Eng. 43, 2028 - 2033 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

I. Turek and N. Tarjányi, "Interference imaging of photorefractive record in thin sample of LiNbO3 crystal," Proc. SPIE 5945, 59450J-1 (2005).

I. Turek and N. Tarjányi, "The photorefractive effect in LiNbO3 crystals," 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609, 660906 (2007).

Other (2)

P. Yeh, Introduction to photorefractive nonlinear optics, (John Wiley & Sons, Inc. New York, 1993) p. 27.

M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, United Kingdom, 2002), pp. 799-808.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Realization of the strip-like illumination.

Fig. 2.
Fig. 2.

Visualization of the refractive index changes. M - mirror, SM - semitransparent mirror, S - sample.

Fig. 3.
Fig. 3.

(a). The intersection of the index ellipsoid with xz plane when electric field is parallel with z-axis (E=107 V/cm; red curve) and without the field (blue curve). Interferograms showing the changes of refractive index when reading beam is polarized in z-direction (b). and x-direction (c). The blue dashed curves mark the illumination region. Intensity of the writing beam (in the middle of the illuminated part) was 5 mWmm-2 and sample was exposed to light for 100 seconds.

Fig. 4.
Fig. 4.

The intersection of the index ellipsoid with xy plane when electric field is parallel with y-axis (E=107 V/cm; red curve) and when E is zero (blue curve). (b) and (c) interferograms showing the changes of refractive index trough the change of the fringe’s shape and the change of intensity. Reading beam is polarized in x-direction. The exposure time was 900 seconds and intensity of writing beam was 5 mWmm-2.

Fig. 5.
Fig. 5.

The intersection of the index ellipsoid with xz plane when electric field is parallel with x-axis (E=107V/cm; red curve) and when it is zero (blue curve). Interferograms showing the changes of phase (refractive index) when reading beam is polarized in z-direction (b) and x-direction (c). The exposure time was 600 seconds and intensity of writing beam was 5 mWmm-2

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

j = e D grad ( n c ) + β I ( r ) e n c μ E ,
d ρ d t = div ( j ) ,
div ( E i ) = η i , j ρ ,
η ij = η 0 ij + r i jk E k ,
i , j η i j x i x j = 1 .
η α = η 0 α + r α k E k ,
( 1 n x 2 + r 1 k E k ) x 2 + ( 1 n y 2 + r 2 k E k ) y 2 + ( 1 n z 2 + r 3 k E k ) z 2 +
+ 2 y z r 4 k E k + 2 x z r 5 k E k + 2 x y r 6 k E k = 1 ,
t ( n c + n d ) = 1 e div ( j ) ,
r α k = ( 0 r 22 r 13 0 r 22 r 13 0 0 r 33 0 r 51 0 r 51 0 0 r 22 0 0 )
( 1 n o 2 + r 13 E 3 ) x 2 + ( 1 n o 2 + r 13 E 3 ) y 2 ( 1 n e 2 + r 33 E 3 ) z 2 1 = 0 .
( 1 n o 2 r 22 E 2 ) x 2 + ( 1 n o 2 + r 22 E 2 ) y 2 + 1 n o 2 z 2 + 2 y z r 51 E 2 1 = 0
1 n o 2 x 2 + 1 n o 2 y 2 + 1 n e 2 z 2 + 2 x z r 51 E 1 2 x y r 22 E 1 1 = 0

Metrics