Abstract

Abstract

We show that the optical properties of thin metallic films depend on the thickness of the film as well as on the deposition technique. Several thicknesses of electron-beam-gun-evaporated aluminium films were measured and the refractive index and the extinction coefficient defined using ellipsometry. In addition, the refractive indexes and the extinction coefficients of atomic-layer-deposited iridium were compared with those of evaporated iridium samples.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  2. K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).
  3. R. S. Bennink, Young-Kwon Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical nonlinearity of metals with metaldielectric photonic bandgap structures," Opt. Lett. 24, 1416-1418 (1999).
    [CrossRef]
  4. B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).
  5. E. Palik, ed., Handbook of Optical Constants of Solids I (Academic Press, San Diego, 1985).
  6. Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1984).
  7. J. A. Woollam Co., Inc., http://www.jawoollam.com/index.html>
  8. LEO 1550 Scanning electron microscope is manufactured by Nano Technology Systems Division of Carl Zeiss SMT, formerly known as LEO Elektronenmikroskopie GmbH, http://www.zeiss.com/>
  9. J. A. Woollam Co., Inc., http://www.jawoollam.com/wvase32.html>
  10. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).
  11. J. H. Weaver, C. G. Olson, and D. W. Lynch, "Optical investigation of the electronic structure of bulk Rh and Ir," Phys. Rev. B. 15, 4115-4118 (1977).
  12. C. V. Thompson, "Structure evolution during processing of polycrystalline films," Annu. Rev. Mater. Sci. 30, 159-190 (2000).
    [CrossRef]
  13. E. Lee, N. Truong, B. Prater, and J. Kardokus, "Copper alloys and alternative barriers for sub-45 nm nodes," Semiconductor International, (7/1/2006).
  14. K. L. Chopra, Thin Film Phenomena (Robert E. Krieger Publishing Company, New York, 1979).
  15. G. Hass, W. R. Hunter, and R. Tousey, "Reflectance of evaporated aluminium in the vacuum ultraviolet," J. Opt. Soc. Am. 46, 1009-1012 (1956).
    [CrossRef]

2005 (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

2000 (1)

C. V. Thompson, "Structure evolution during processing of polycrystalline films," Annu. Rev. Mater. Sci. 30, 159-190 (2000).
[CrossRef]

1999 (2)

1977 (1)

J. H. Weaver, C. G. Olson, and D. W. Lynch, "Optical investigation of the electronic structure of bulk Rh and Ir," Phys. Rev. B. 15, 4115-4118 (1977).

1956 (1)

Bennink, R. S.

Canfield, B. K.

B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).

Hass, G.

Hunter, W. R.

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).

Kaipiainen, M.

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).

Kettunen, V.

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

Kuittinen, M.

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

Kujala, S.

B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Lynch, D. W.

J. H. Weaver, C. G. Olson, and D. W. Lynch, "Optical investigation of the electronic structure of bulk Rh and Ir," Phys. Rev. B. 15, 4115-4118 (1977).

Nenonen, S.

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

Olson, C. G.

J. H. Weaver, C. G. Olson, and D. W. Lynch, "Optical investigation of the electronic structure of bulk Rh and Ir," Phys. Rev. B. 15, 4115-4118 (1977).

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).

Thompson, C. V.

C. V. Thompson, "Structure evolution during processing of polycrystalline films," Annu. Rev. Mater. Sci. 30, 159-190 (2000).
[CrossRef]

Tousey, R.

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).

Vahimaa, P.

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

Weaver, J. H.

J. H. Weaver, C. G. Olson, and D. W. Lynch, "Optical investigation of the electronic structure of bulk Rh and Ir," Phys. Rev. B. 15, 4115-4118 (1977).

Young-Kwon Yoon, R. S.

Annu. Rev. Mater. Sci. (1)

C. V. Thompson, "Structure evolution during processing of polycrystalline films," Annu. Rev. Mater. Sci. 30, 159-190 (2000).
[CrossRef]

J. Mod. Opt. (1)

K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, "Inductive grid filters for rejection of infrared radiation," J. Mod. Opt. 51, 1651-1661 (2004).

J. Opt. A: Pure Appl. Opt. (1)

B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, "A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures," J. Opt. A: Pure Appl. Opt. 24, 1416-1418 (1999).

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Phys. Rev. B. (1)

J. H. Weaver, C. G. Olson, and D. W. Lynch, "Optical investigation of the electronic structure of bulk Rh and Ir," Phys. Rev. B. 15, 4115-4118 (1977).

Phys. Rev. Lett. (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Other (8)

E. Lee, N. Truong, B. Prater, and J. Kardokus, "Copper alloys and alternative barriers for sub-45 nm nodes," Semiconductor International, (7/1/2006).

K. L. Chopra, Thin Film Phenomena (Robert E. Krieger Publishing Company, New York, 1979).

E. Palik, ed., Handbook of Optical Constants of Solids I (Academic Press, San Diego, 1985).

Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1984).

J. A. Woollam Co., Inc., http://www.jawoollam.com/index.html>

LEO 1550 Scanning electron microscope is manufactured by Nano Technology Systems Division of Carl Zeiss SMT, formerly known as LEO Elektronenmikroskopie GmbH, http://www.zeiss.com/>

J. A. Woollam Co., Inc., http://www.jawoollam.com/wvase32.html>

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Refractive indexes (a) and extinction coefficients (b) of 44 nm, 90 nm, and 144 nm thick atomic-layer-deposited iridium films compared to 30 nm, 110 nm, and 115 nm thick evaporated iridium films and the literature values [6] as a function of wavelength.

Fig. 2.
Fig. 2.

Surface structure of the 115 nm thick evaporated iridium film. The cracks are due to a poor adhesion and different thermal expansion coefficients between the substrate and iridium.

Fig. 3.
Fig. 3.

Refractive indexes (a) and extinction coefficients (b) of 37 nm, 70 nm, 163 nm, 206 nm, and 290 nm thick evaporated aluminium films compared to aluminium values given in the literature [6] as a function of wavelength.

Fig. 4.
Fig. 4.

Top view of 270 nm (a) and 100 nm (b) thick electron beam gun evaporated aluminium layer.

Fig. 5.
Fig. 5.

Cross-sectional view of 270 nm (a) and 100 nm (b) thick electron beam gun evaporated aluminium layer on fused silica substrate.

Fig. 6.
Fig. 6.

90 % confidence limits of refractive indexes (a) and extinction coefficients (b) for 30-nm-thick electron-beam-gun-evaporated iridium and for 163-nm-thick electron-beamgun- evaporated aluminum films.

Metrics