Abstract

Abstract

Domain inversion is used in a simple fashion to improve significantly the performance of a waveguide electro-optic modulator in z-cut LiNbO3. The waveguide arms of the Mach-Zehnder interferometer are placed in opposite domain-oriented regions under the same, narrower and more efficient electrode, so that opposite phase shifts (push-pull effect) can still be achieved despite the arms being subjected to the same electric field. Switching voltages close to 2 V are obtained, which allow 10Gb/s modulation with inexpensive drivers, such as those used for electro-absorption modulators, which deliver driving voltages well below 3V.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators

Po Dong, Long Chen, and Young-kai Chen
Opt. Express 20(6) 6163-6169 (2012)

Low power consumption integrated acousto-optic filter in domain inverted LiNbO3 superlattice

D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri
Opt. Express 18(26) 27181-27190 (2010)

Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation

Hiromu Sato, Hiroki Miura, Feng Qiu, Andrew M. Spring, Tsubasa Kashino, Takamasa Kikuchi, Masaaki Ozawa, Hideyuki Nawata, Keisuke Odoi, and Shiyoshi Yokoyama
Opt. Express 25(2) 768-775 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external electric field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62, 5,435–436 (1993).
    [Crossref]
  3. V. Pruneri, R. Koch, P.G. Kazansky, P.St.J. Russell, and D.C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
    [Crossref] [PubMed]
  4. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
  5. G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).
  6. J.H. Schaffner, “Periodic domain reversal electro-optic modulator,” patent US5,278,924 (1994).
  7. Y. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 8, 1035–1037 (2001).
  8. N. Courjal, H. Porte, J. Hauden, P. Mollier, and N. Grossard, “Modeling and optimization of low chirp LiNbO3 Mach-Zehnder modulators with an inverted ferroelectric domain section,” J. Lightwave Technol. 22, 1338–1343 (2004).
    [Crossref]
  9. V. Pruneri and A. Nespola, “Coplanar integrated optical waveguide electro-optical modulator,” patent US6,760,493 (2004).
  10. S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
    [Crossref]
  11. V. Pruneri. F. Lucchi and P. Vergani, “Method and structure of electric field poling of Ti indiffused LiNbO3 substrates without the use of grinding process,” patent US7,155,102 (2005).

2005 (2)

S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
[Crossref]

V. Pruneri. F. Lucchi and P. Vergani, “Method and structure of electric field poling of Ti indiffused LiNbO3 substrates without the use of grinding process,” patent US7,155,102 (2005).

2004 (2)

2001 (2)

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Y. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 8, 1035–1037 (2001).

2000 (1)

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

1995 (2)

V. Pruneri, R. Koch, P.G. Kazansky, P.St.J. Russell, and D.C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[Crossref] [PubMed]

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

1994 (1)

J.H. Schaffner, “Periodic domain reversal electro-optic modulator,” patent US5,278,924 (1994).

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external electric field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62, 5,435–436 (1993).
[Crossref]

Attanasio, D.V.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Bosenberg, W.R.

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

Bossi, D.E.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Byer, R.L.

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

Courjal, N.

Eckardt, R.C.

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

Fejer, M.M.

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

Fritz, D.J.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Grossard, N.

Grundktter, W.

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Hallemeir, P.F.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Hanna, D.C.

Hauden, J.

Ichikawa, J.

S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
[Crossref]

Kazansky, P.G.

Kissa, K.M.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Kitamura, K.

S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
[Crossref]

Koch, R.

Kurimura, S.

S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
[Crossref]

Lafaw, D.A.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Lee, Y.L.

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Lu, Y.

Y. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 8, 1035–1037 (2001).

Lucchi, V. Pruneri. F.

V. Pruneri. F. Lucchi and P. Vergani, “Method and structure of electric field poling of Ti indiffused LiNbO3 substrates without the use of grinding process,” patent US7,155,102 (2005).

Maack, D.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

McBrien, G.J.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Mollier, P.

Murphy, E.J.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Myers, L.E.

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external electric field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62, 5,435–436 (1993).
[Crossref]

Nespola, A.

V. Pruneri and A. Nespola, “Coplanar integrated optical waveguide electro-optical modulator,” patent US6,760,493 (2004).

Oikawa, S.

S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
[Crossref]

Pierce, J.W.

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

Porte, H.

Pruneri, V.

Quiring, V.

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Ricken, R.

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Russell, P.St.J.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external electric field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62, 5,435–436 (1993).
[Crossref]

Salamo, G. J.

Y. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 8, 1035–1037 (2001).

Schaffner, J.H.

J.H. Schaffner, “Periodic domain reversal electro-optic modulator,” patent US5,278,924 (1994).

Schreiber, G.

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Sohler, W.

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Suche, H.

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Vergani, P.

V. Pruneri. F. Lucchi and P. Vergani, “Method and structure of electric field poling of Ti indiffused LiNbO3 substrates without the use of grinding process,” patent US7,155,102 (2005).

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external electric field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62, 5,435–436 (1993).
[Crossref]

Wooten, L.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Xiao, M.

Y. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 8, 1035–1037 (2001).

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external electric field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62, 5,435–436 (1993).
[Crossref]

Yamamoto, F.

S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
[Crossref]

Yi-Yan, A.

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Appl. Phys. (1)

G. Schreiber, H. Suche, Y.L. Lee, W. Grundktter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascading difference frequency conversion in periodically poled Ti:LiNbO3 waveguide using pulse and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Appl. Phys. Lett. (2)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external electric field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62, 5,435–436 (1993).
[Crossref]

Y. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 8, 1035–1037 (2001).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeir, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

J. Light. Tech. (1)

S. Oikawa, F. Yamamoto, J. Ichikawa, S. Kurimura, and K. Kitamura, “Zero-Chirp Broadband Z-Cut Ti:LiNbO3 Optical Modulator Using Polarization Reversal and Branch Electrode,” J. Light. Tech.,  23, 9, 2756–2760 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).

Opt. Lett. (1)

patent US (3)

J.H. Schaffner, “Periodic domain reversal electro-optic modulator,” patent US5,278,924 (1994).

V. Pruneri. F. Lucchi and P. Vergani, “Method and structure of electric field poling of Ti indiffused LiNbO3 substrates without the use of grinding process,” patent US7,155,102 (2005).

V. Pruneri and A. Nespola, “Coplanar integrated optical waveguide electro-optical modulator,” patent US6,760,493 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1. Cross section of proposed domain-inverted LiNbO3 modulator.
Figure 2.
Figure 2. SEM image of etched LiNbO3 structure. The domain boundary lies in between the two Mach-Zehnder waveguides.
Figure 3.
Figure 3. Typical modulator electrical reflection (S11) and electro-optic (EO) response.

Tables (1)

Tables Icon

Table 1. Comparison between previous configurations and our proposal.

Metrics