Abstract

Abstract

We present here a new class of multi-channel Fiber Bragg grating (FBG), which provides the characteristics of channelized dispersion but does so with only a single reflection band. An FBG of this type can provide pure phase control of the spectral waveform of optical pulses without introducing any deleterious insertion-loss-variation. We anticipate that this new class of FBG will find some applications in wavelength-division-multiplexing systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  2. S. Longhi, M. Marano, P. Laporta, O. Svelto, and M. Belmonte, "Propagation, manipulation, and control of picosecond optical pulses at 1.5 ?m in fiber Bragg gratings," J. Opt. Soc. Am. B 19, 2742 (2002).
  3. G. Lenz, B. J. Eggleton, and N. Litchinitser, "Pulse compression using fiber gratings as highly dispersive nonlinear elements," J. Opt. Soc. Am. B 15, 715 (1998).
  4. J. Khurgin, "Slowing down in moiré-fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 1-4 (2000).
  5. F. Quellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett. 12, 847 (1987).
    [CrossRef]
  6. M. Ibsen and R. Feced, "Bragg gratings for pure dispersion-slope compensation," Opt. Lett. 28, 980 (2003).
    [CrossRef] [PubMed]
  7. J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
    [CrossRef]
  8. H. Li, Y. Sheng, Y. Li, and J. E. Rothenber, "Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation," J. Lightwave Technol. 13, 2074 (2003).
  9. M. Poulin, Y. Vasseur, F. Trépanier, M. Guy, M. Morin, Y. Painchaud, "Apodization of a multichannel dispersion compensator by phase modulation coding of a phase mask," J. Rothenberg, OFC'2005 (2005).
  10. K. Kolossovski, R. Sammut, A. Buryak, and D. Stepanov, "Three-step design optimization for multi-channel fibre Bragg gratings," Opt. Express 11, 1029-1038 (2003).
    [CrossRef] [PubMed]
  11. M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458 (2005).
    [CrossRef] [PubMed]
  12. X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, "Reduction of collision-induced timing jitter in dense wavelength-division multiplexing by the use of periodic-group-delay dispersion compensators," Opt. Lett. 28, 983 (2003).
    [CrossRef] [PubMed]
  13. X. Shu, K. Sugden, and K. Byron, "Bragg grating-based all-fiber distributed Gires-Tournois etalons," Opt. Lett. 28, 881 (2003).
    [CrossRef] [PubMed]
  14. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165 (2001).
    [CrossRef]
  15. E. G. Turitsyna, X. Shu, S. K. Turitsyn, I. Bennion, "Design and fabrication of fibre Bragg gratings with V-shaped dispersion profile," J. Lightwave Technol. 25, 606 (2007).
    [CrossRef]
  16. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  17. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
    [CrossRef]

2007 (1)

2005 (1)

2003 (6)

2002 (1)

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

1999 (1)

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

1998 (1)

1997 (2)

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1987 (1)

Belmonte, M.

Bennion, I.

E. G. Turitsyna, X. Shu, S. K. Turitsyn, I. Bennion, "Design and fabrication of fibre Bragg gratings with V-shaped dispersion profile," J. Lightwave Technol. 25, 606 (2007).
[CrossRef]

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Buryak, A.

Byron, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

X. Shu, K. Sugden, and K. Byron, "Bragg grating-based all-fiber distributed Gires-Tournois etalons," Opt. Lett. 28, 881 (2003).
[CrossRef] [PubMed]

Cai, J. X.

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Feced, R.

Feinberg, J.

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

Felmeri, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Feng, K. M.

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

Grubsky, V.

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Huang, Z.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Ibsen, M.

Khrushchev, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Kolossovski, K.

Lakoba, T. I.

Laporta, P.

Lenz, G.

Li, H.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenber, "Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation," J. Lightwave Technol. 13, 2074 (2003).

Li, Y.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenber, "Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation," J. Lightwave Technol. 13, 2074 (2003).

Litchinitser, N.

Liu, X.

Lloyd, G.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Longhi, S.

Marano, M.

Meltz, G.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Mitchell, J.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Mollenauer, L. F.

Quellette, F.

Rhead, P.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Rothenber, J. E.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenber, "Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation," J. Lightwave Technol. 13, 2074 (2003).

Sammut, R.

Sheng, Y.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenber, "Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation," J. Lightwave Technol. 13, 2074 (2003).

Shu, X.

E. G. Turitsyna, X. Shu, S. K. Turitsyn, I. Bennion, "Design and fabrication of fibre Bragg gratings with V-shaped dispersion profile," J. Lightwave Technol. 25, 606 (2007).
[CrossRef]

X. Shu, K. Sugden, and K. Byron, "Bragg grating-based all-fiber distributed Gires-Tournois etalons," Opt. Lett. 28, 881 (2003).
[CrossRef] [PubMed]

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

Starodubov, D. S.

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

Stepanov, D.

Sugden, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

X. Shu, K. Sugden, and K. Byron, "Bragg grating-based all-fiber distributed Gires-Tournois etalons," Opt. Lett. 28, 881 (2003).
[CrossRef] [PubMed]

Svelto, O.

Turitsyn, S. K.

Turitsyna, E. G.

Vasilyev, M.

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

Wei, X.

Willner, A. E.

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

Xie, C.

IEEE J. Quantum Electron. (1)

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons," IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

J. X. Cai, K. M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinear chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1455 (1999).
[CrossRef]

J. Lightwave Technol. (4)

H. Li, Y. Sheng, Y. Li, and J. E. Rothenber, "Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation," J. Lightwave Technol. 13, 2074 (2003).

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

E. G. Turitsyna, X. Shu, S. K. Turitsyn, I. Bennion, "Design and fabrication of fibre Bragg gratings with V-shaped dispersion profile," J. Lightwave Technol. 25, 606 (2007).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (5)

Other (2)

M. Poulin, Y. Vasseur, F. Trépanier, M. Guy, M. Morin, Y. Painchaud, "Apodization of a multichannel dispersion compensator by phase modulation coding of a phase mask," J. Rothenberg, OFC'2005 (2005).

J. Khurgin, "Slowing down in moiré-fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 1-4 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the properties of the proposed new class FBG. The reflection bands of a SFBG are also shown in dashed line for comparison.

Fig. 2.
Fig. 2.

The designed 8-channel V-shaped grating. (a) Coupling coefficient (b) Period variation profile. (c) Calculated reflectivity and group delay response. (d) Calculated dispersion spectrum.

Fig. 3.
Fig. 3.

The design and experimental results of a 4-channel V-shaped grating. (a) Coupling coefficient and period variation profile (inset). (b) Measured and simulated reflection spectra. (c) Measured and simulated group delay response. (d) Measured (with 100pm average window) and simulated dispersion spectrum.

Fig. 4.
Fig. 4.

The design and experimental results of a 4-channel linear dispersion grating. (a). Coupling coefficient and period variation profile (inset). (b). Measured and simulated reflection spectra. (c). Measured and simulated group delay response. (d). Measured (with 200pm average window) and simulated dispersion spectrum.

Fig. 5.
Fig. 5.

Simulated group delay response of the TDC with different dispersion settings. (a)D=-200ps/nm, (b)D=0ps/nm, (c)D=+200ps/nm. The TDC constructed from two FBGs, whose group delay responses are also shown.

Metrics