Abstract

Abstract

We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intra-cavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the µJ-level appears to be feasible.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers, (New York: Marcel Dekker, 2002).
    [Crossref]
  2. G.P. Agrawal, “Nonlinear Fiber Optics,” Academic, New York, (1995).
  3. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett.,  64, 149 (1994).
    [Crossref]
  4. K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett.,  67, 158 (1995).
    [Crossref]
  5. G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 1.55 µm,” Opt. Lett.,  20, 1289 (1995).
    [Crossref] [PubMed]
  6. F. Ö. Ilday, J. Buckley, W. Clark, and F.W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.,  91, 213902 (2004).
    [Crossref]
  7. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, “Self-similar low-noise ytterbium-doped double-clad fiber laser,” Appl. Phys. B,  85, 63 (2006).
    [Crossref]
  8. R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893 (2004).
    [Crossref]
  9. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett.,  31, 1788 (2006).
    [Crossref] [PubMed]
  10. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal dispersion femtosecond fiber laser,” Opt. Express 14, 10095 (2006).
    [Crossref] [PubMed]
  11. A. Albert, V. Coudec, L. Lefort, and A. Barthelemy, “High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design,” IEEE Photon. Technol. Lett. 16, 416 (2004).
    [Crossref]
  12. J. R. Buckley, F. W. Wise, F.Ö. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett.,  30, 1888 (2005).
    [Crossref] [PubMed]
  13. M.J. Messerly, J.W. Dawson, and C.P.J. Barty, “25 nJ Passively Mode-Locked Fiber Laser at 1080 nm,” Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).
  14. B. Ortaç, J. Limpert, and A. Tünnermann, “High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime,” Opt. Lett.,  32, 2149 (2007).
    [Crossref] [PubMed]
  15. C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).
  16. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, “Pulse energy scaling to 5 µJ from a femtosecond thin disk laser,” Opt. Lett. 31, 2728 (2006).
    [Crossref] [PubMed]
  17. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
    [Crossref]
  18. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
    [Crossref]
  19. A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, “Diode-pumped femtosecond laser oscillator with cavity dumping,” Opt. Lett.,  29, 1288 (2004).
    [Crossref] [PubMed]
  20. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715 (2006).
    [Crossref] [PubMed]
  21. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly-efficient transmission gratings in fused silica for chirped pulse amplification systems,” Appl. Opt. 42, 6934 (2003).
    [Crossref] [PubMed]
  22. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252 (2007)
    [Crossref] [PubMed]

2007 (2)

2006 (5)

2005 (3)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

J. R. Buckley, F. W. Wise, F.Ö. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett.,  30, 1888 (2005).
[Crossref] [PubMed]

2004 (4)

A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, “Diode-pumped femtosecond laser oscillator with cavity dumping,” Opt. Lett.,  29, 1288 (2004).
[Crossref] [PubMed]

A. Albert, V. Coudec, L. Lefort, and A. Barthelemy, “High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design,” IEEE Photon. Technol. Lett. 16, 416 (2004).
[Crossref]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893 (2004).
[Crossref]

F. Ö. Ilday, J. Buckley, W. Clark, and F.W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.,  91, 213902 (2004).
[Crossref]

2003 (1)

1995 (2)

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett.,  67, 158 (1995).
[Crossref]

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 1.55 µm,” Opt. Lett.,  20, 1289 (1995).
[Crossref] [PubMed]

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett.,  64, 149 (1994).
[Crossref]

Agrawal, G.P.

G.P. Agrawal, “Nonlinear Fiber Optics,” Academic, New York, (1995).

Albert, A.

A. Albert, V. Coudec, L. Lefort, and A. Barthelemy, “High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design,” IEEE Photon. Technol. Lett. 16, 416 (2004).
[Crossref]

Apolonski, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Barthelemy, A.

A. Albert, V. Coudec, L. Lefort, and A. Barthelemy, “High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design,” IEEE Photon. Technol. Lett. 16, 416 (2004).
[Crossref]

Barty, C.P.J.

M.J. Messerly, J.W. Dawson, and C.P.J. Barty, “25 nJ Passively Mode-Locked Fiber Laser at 1080 nm,” Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).

Brunel, M.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, “Self-similar low-noise ytterbium-doped double-clad fiber laser,” Appl. Phys. B,  85, 63 (2006).
[Crossref]

Buckley, J.

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal dispersion femtosecond fiber laser,” Opt. Express 14, 10095 (2006).
[Crossref] [PubMed]

F. Ö. Ilday, J. Buckley, W. Clark, and F.W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.,  91, 213902 (2004).
[Crossref]

Buckley, J. R.

Chedot, C.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, “Self-similar low-noise ytterbium-doped double-clad fiber laser,” Appl. Phys. B,  85, 63 (2006).
[Crossref]

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Chong, A.

Clark, W.

F. Ö. Ilday, J. Buckley, W. Clark, and F.W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.,  91, 213902 (2004).
[Crossref]

Clausnitzer, T.

Coudec, V.

A. Albert, V. Coudec, L. Lefort, and A. Barthelemy, “High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design,” IEEE Photon. Technol. Lett. 16, 416 (2004).
[Crossref]

Courjaud, A.

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Dawson, J.W.

M.J. Messerly, J.W. Dawson, and C.P.J. Barty, “25 nJ Passively Mode-Locked Fiber Laser at 1080 nm,” Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).

Deguil-Robin, N.

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Delaigue, M.

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Ermeneux, S.

Fermann, M. E.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers, (New York: Marcel Dekker, 2002).
[Crossref]

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Fuchs, H.-J.

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers, (New York: Marcel Dekker, 2002).
[Crossref]

Golling, M.

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Grange, R.

Haus, H. A.

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 1.55 µm,” Opt. Lett.,  20, 1289 (1995).
[Crossref] [PubMed]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett.,  67, 158 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett.,  64, 149 (1994).
[Crossref]

Herda, R.

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893 (2004).
[Crossref]

Hideur, A.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, “Self-similar low-noise ytterbium-doped double-clad fiber laser,” Appl. Phys. B,  85, 63 (2006).
[Crossref]

Hoenninger, C.

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Ilday, F. Ö.

F. Ö. Ilday, J. Buckley, W. Clark, and F.W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.,  91, 213902 (2004).
[Crossref]

Ilday, F.Ö.

Ippen, E. P.

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 1.55 µm,” Opt. Lett.,  20, 1289 (1995).
[Crossref] [PubMed]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett.,  67, 158 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett.,  64, 149 (1994).
[Crossref]

Jupé, M.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Keller, U.

Killi, A.

Kley, E.-B.

Kopf, D.

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Lederer, M. J.

Lefort, L.

A. Albert, V. Coudec, L. Lefort, and A. Barthelemy, “High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design,” IEEE Photon. Technol. Lett. 16, 416 (2004).
[Crossref]

Lenz, G.

Limpert, J.

Manek-Hoenninger, I.

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Marchese, S. V.

Martel, G.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, “Self-similar low-noise ytterbium-doped double-clad fiber laser,” Appl. Phys. B,  85, 63 (2006).
[Crossref]

Messerly, M.J.

M.J. Messerly, J.W. Dawson, and C.P.J. Barty, “25 nJ Passively Mode-Locked Fiber Laser at 1080 nm,” Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).

Morgner, U.

Mottay, E.

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Nelson, L. E.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett.,  64, 149 (1994).
[Crossref]

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893 (2004).
[Crossref]

Ortaç, B.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Renninger, W.

Rigail, P.

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Ristau, D.

Röser, F.

Rothhardt, J.

Salin, F.

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715 (2006).
[Crossref] [PubMed]

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Schmidt, O.

Schreiber, T.

Sosnowski, T.

Sucha, G.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers, (New York: Marcel Dekker, 2002).
[Crossref]

Südmeyer, T.

Tamura, K.

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett.,  67, 158 (1995).
[Crossref]

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 1.55 µm,” Opt. Lett.,  20, 1289 (1995).
[Crossref] [PubMed]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett.,  64, 149 (1994).
[Crossref]

Tang, D. Y.

Tünnermann, A.

Wise, F.

Wise, F. W.

Wise, F.W.

F. Ö. Ilday, J. Buckley, W. Clark, and F.W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.,  91, 213902 (2004).
[Crossref]

Wu, J.

Yvernault, P.

Zellmer, H.

Zhao, L. M.

Zöllner, K.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, “Self-similar low-noise ytterbium-doped double-clad fiber laser,” Appl. Phys. B,  85, 63 (2006).
[Crossref]

Appl. Phys. Lett. (2)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett.,  64, 149 (1994).
[Crossref]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett.,  67, 158 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Albert, V. Coudec, L. Lefort, and A. Barthelemy, “High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design,” IEEE Photon. Technol. Lett. 16, 416 (2004).
[Crossref]

New J. Phys. (2)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. Buckley, W. Clark, and F.W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.,  91, 213902 (2004).
[Crossref]

Other (4)

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers, (New York: Marcel Dekker, 2002).
[Crossref]

G.P. Agrawal, “Nonlinear Fiber Optics,” Academic, New York, (1995).

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger, and F. Salin, “0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz,” Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

M.J. Messerly, J.W. Dawson, and C.P.J. Barty, “25 nJ Passively Mode-Locked Fiber Laser at 1080 nm,” Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of the passively mode-locked Yb-doped rod-type photonic crystal large mode area fiber laser. SAM: saturable absorber mirror.

Fig. 2.
Fig. 2.

Cross section of the 70 µm core rod-type photonic crystal fiber.

Fig. 3.
Fig. 3.

Optical spectrum of the output signal. Inset shows the optical spectrum on a logarithmic scale.

Fig. 4.
Fig. 4.

(a) Autocorrelation trace of the output chirped pulses and (b) after extra-cavity compressed pulses.

Fig. 5.
Fig. 5.

Transient evolution in the spectral domain from quantum noise to steady state solution for Esat=67 nJ. (Logarithmic scale: -30 dB oe-15-17-10725-i001 0 dB (max))

Fig. 6.
Fig. 6.

Simulation of the intra-cavity pulse evolution of the dispersion compensation free mode-locked fiber laser in the temporal and spectral domain. (OC- Output coupling, SAM-saturable absorber mirror. Logarithmic scale: -30 dB oe-15-17-10725-i002 0 dB (max))

Fig. 7.
Fig. 7.

(a) Spectrogram of the steady state solution for the dispersion compensation free mode-locked fiber laser at the output of the fiber (Spectrogram resolution: 600 fs, linear scale: 0 oe-15-17-10725-i003 max). (b) Spectrum at the output. (c) Autocorrelation of the transform-limited pulse calculated from the spectrum.

Metrics