Abstract

Abstract

We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intra-cavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the µJ-level appears to be feasible.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers, (New York: Marcel Dekker, 2002).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 1995).
  3. K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
    [CrossRef]
  4. K. Tamura, E. P. Ippen and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158 (1995).
    [CrossRef]
  5. G. Lenz, K. Tamura, H. A. Haus and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20,1289 (1995).
    [CrossRef] [PubMed]
  6. F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
    [CrossRef]
  7. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
    [CrossRef]
  8. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
    [CrossRef]
  9. L. M. Zhao, D. Y. Tang and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788 (2006).
    [CrossRef] [PubMed]
  10. A. Chong, J. Buckley, W. Renninger and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  11. A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004).
    [CrossRef]
  12. J. R. Buckley, F. W. Wise, F. Ö. Ilday and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888 (2005).
    [CrossRef] [PubMed]
  13. M. J. Messerly, J. W. Dawson, and C. P. J. Barty, "25 nJ Passively Mode-Locked Fiber Laser at 1080 nm," Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).
  14. B. Ortaç, J. Limpert and A. Tünnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett. 32, 2149 (2007).
    [CrossRef] [PubMed]
  15. C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger and F. Salin, "0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz," Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).
  16. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange and U. Keller, "Pulse energy scaling to 5 ?J from a femtosecond thin disk laser," Opt. Lett. 31, 2728 (2006).
    [CrossRef] [PubMed]
  17. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
    [CrossRef]
  18. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
    [CrossRef]
  19. A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, "Diode-pumped femtosecond laser oscillator with cavity dumping," Opt. Lett. 29, 1288 (2004).
    [CrossRef] [PubMed]
  20. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715 (2006).
    [CrossRef] [PubMed]
  21. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé and D. Ristau, "Highly-efficient transmission gratings in fused silica for chirped pulse amplification systems," Appl. Opt. 42, 6934 (2003).
    [CrossRef] [PubMed]
  22. T. Schreiber, B. Ortaç, J. Limpert and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252 (2007)
    [CrossRef] [PubMed]

2007 (2)

2006 (5)

2005 (3)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

J. R. Buckley, F. W. Wise, F. Ö. Ilday and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

2004 (4)

A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, "Diode-pumped femtosecond laser oscillator with cavity dumping," Opt. Lett. 29, 1288 (2004).
[CrossRef] [PubMed]

A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

2003 (1)

1995 (2)

G. Lenz, K. Tamura, H. A. Haus and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20,1289 (1995).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Albert, A.

A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Barthelemy, A.

A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

Brunel, M.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Buckley, J.

A. Chong, J. Buckley, W. Renninger and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14, 10095 (2006).
[CrossRef] [PubMed]

F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Buckley, J. R.

Chedot, C.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Chong, A.

Clark, W.

F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Clausnitzer, T.

Coudec, V.

A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Ermeneux, S.

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Fuchs, H.-J.

Golling, M.

Graf, R.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Grange, R.

Haus, H. A.

G. Lenz, K. Tamura, H. A. Haus and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20,1289 (1995).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Herda, R.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

Hideur, A.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Ilday, F. Ö.

J. R. Buckley, F. W. Wise, F. Ö. Ilday and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Ippen, E. P.

G. Lenz, K. Tamura, H. A. Haus and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20,1289 (1995).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Jupé, M.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Keller, U.

Killi, A.

Kley, E.-B.

Kopf, D.

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Lederer, M. J.

Lefort, L.

A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

Lenz, G.

Limpert, J.

Marchese, S. V.

Martel, G.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Morgner, U.

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Nelson, L. E.

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

Ortaç, B.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Renninger, W.

Ristau, D.

Röser, F.

Rothhardt, J.

Salin, F.

Schmidt, O.

Schreiber, T.

Sosnowski, T.

Südmeyer, T.

Tamura, K.

G. Lenz, K. Tamura, H. A. Haus and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20,1289 (1995).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Tang, D. Y.

Tünnermann, A.

Wise, F.

Wise, F. W.

Wise, F.W.

F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Wu, J.

Yvernault, P.

Zellmer, H.

Zhao, L. M.

Zöllner, K.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

K. Tamura, E. P. Ippen and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

New J. Phys. (2)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Other (4)

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers, (New York: Marcel Dekker, 2002).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 1995).

M. J. Messerly, J. W. Dawson, and C. P. J. Barty, "25 nJ Passively Mode-Locked Fiber Laser at 1080 nm," Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).

C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger and F. Salin, "0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz," Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of the passively mode-locked Yb-doped rod-type photonic crystal large mode area fiber laser. SAM: saturable absorber mirror.

Fig. 2.
Fig. 2.

Cross section of the 70 µm core rod-type photonic crystal fiber.

Fig. 3.
Fig. 3.

Optical spectrum of the output signal. Inset shows the optical spectrum on a logarithmic scale.

Fig. 4.
Fig. 4.

(a) Autocorrelation trace of the output chirped pulses and (b) after extra-cavity compressed pulses.

Fig. 5.
Fig. 5.

Transient evolution in the spectral domain from quantum noise to steady state solution for Esat=67 nJ. (Logarithmic scale: -30 dB oe-15-17-10725-i001 0 dB (max))

Fig. 6.
Fig. 6.

Simulation of the intra-cavity pulse evolution of the dispersion compensation free mode-locked fiber laser in the temporal and spectral domain. (OC- Output coupling, SAM-saturable absorber mirror. Logarithmic scale: -30 dB oe-15-17-10725-i002 0 dB (max))

Fig. 7.
Fig. 7.

(a) Spectrogram of the steady state solution for the dispersion compensation free mode-locked fiber laser at the output of the fiber (Spectrogram resolution: 600 fs, linear scale: 0 oe-15-17-10725-i003 max). (b) Spectrum at the output. (c) Autocorrelation of the transform-limited pulse calculated from the spectrum.

Metrics