Abstract

Abstract

Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP4O12 (LNP) and Nd:GdVO4, by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Bandres and J. C. Gutiérrez-Vega, "Ince-Gaussian modes of the paraxial wave equation and stable resonators," J. Opt. Soc. Am. A 21, 873-880 (2004).
    [CrossRef]
  2. U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, "Observation of Ince-Gaussian modes in stable resonators," Opt. Lett. 29, 1870-1872 (2004).
    [CrossRef] [PubMed]
  3. K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, "Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser," Opt. Lett. 23, 201-203 (1998).
    [CrossRef]
  4. R. Kawai, Y. Asakawa, and K. Otsuka, "Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped microchip LiNdP4O12 lasers," IEEE J. Quantum Electron. 35, 1542-1547 (1999).
    [CrossRef]
  5. Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, "Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing conditions," Jpn. J. Appl. Phys. 38, L515-517 (1999).
    [CrossRef]
  6. Catalogue, CRYSTECH Inc.
  7. J. Nakano, "Thermal properties of a solid-state laser crystal LiNdP4O12," J. Appl. Phys. 52, 1239-1243 (1981).
    [CrossRef]
  8. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, "Two-dimensional simulation of an unstable resonator with a stable core," Appl. Opt. 38, 3298-3307 (1999).
    [CrossRef]
  9. M. Endo, S. Yamaguchi, T. Uchiyama, and T. Fujioka, "Numerical simulation of the W-Axicon type optical resonator for coaxial slab CO2 lasers," J. Phys. D 34, 68-77 (2001).
  10. M. Endo, "Numerical simulation of an optical resonator for generation of a doughnut-like laser beam," Opt. Express 12, 1959-1965 (2004).
    [CrossRef] [PubMed]
  11. A. Bhowmik, "Closed-cavity solutions with partially coherent fields in the space-frequency domain," Appl. Opt. 22, 3338-3346 (1983).
    [CrossRef] [PubMed]
  12. J. W. Goodman, ntroduction to Fourier OpticsI (Roberts & Company Publishers, 2004), Chap. 4.
  13. J. W. Goodman, ntroduction to Fourier OpticsI (Roberts & Company Publishers, 2004) pp. 97-101.
  14. A. E. Siegman, Lasers (University Science Books, 1986), p. 295.

2004 (3)

2001 (1)

M. Endo, S. Yamaguchi, T. Uchiyama, and T. Fujioka, "Numerical simulation of the W-Axicon type optical resonator for coaxial slab CO2 lasers," J. Phys. D 34, 68-77 (2001).

1999 (3)

R. Kawai, Y. Asakawa, and K. Otsuka, "Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped microchip LiNdP4O12 lasers," IEEE J. Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, "Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing conditions," Jpn. J. Appl. Phys. 38, L515-517 (1999).
[CrossRef]

M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, "Two-dimensional simulation of an unstable resonator with a stable core," Appl. Opt. 38, 3298-3307 (1999).
[CrossRef]

1998 (1)

1983 (1)

1981 (1)

J. Nakano, "Thermal properties of a solid-state laser crystal LiNdP4O12," J. Appl. Phys. 52, 1239-1243 (1981).
[CrossRef]

Asakawa, Y.

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, "Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing conditions," Jpn. J. Appl. Phys. 38, L515-517 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, "Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped microchip LiNdP4O12 lasers," IEEE J. Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, "Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser," Opt. Lett. 23, 201-203 (1998).
[CrossRef]

Bandres, M. A.

Bhowmik, A.

Endo, M.

Fujioka, T.

M. Endo, S. Yamaguchi, T. Uchiyama, and T. Fujioka, "Numerical simulation of the W-Axicon type optical resonator for coaxial slab CO2 lasers," J. Phys. D 34, 68-77 (2001).

M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, "Two-dimensional simulation of an unstable resonator with a stable core," Appl. Opt. 38, 3298-3307 (1999).
[CrossRef]

Gutiérrez-Vega, J. C.

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, "Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped microchip LiNdP4O12 lasers," IEEE J. Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, "Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing conditions," Jpn. J. Appl. Phys. 38, L515-517 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, "Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser," Opt. Lett. 23, 201-203 (1998).
[CrossRef]

Kawakami, M.

Mandel, P.

Nakano, J.

J. Nakano, "Thermal properties of a solid-state laser crystal LiNdP4O12," J. Appl. Phys. 52, 1239-1243 (1981).
[CrossRef]

Nanri, K.

Ohki, K.

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, "Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing conditions," Jpn. J. Appl. Phys. 38, L515-517 (1999).
[CrossRef]

Otsuka, K.

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, "Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing conditions," Jpn. J. Appl. Phys. 38, L515-517 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, "Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped microchip LiNdP4O12 lasers," IEEE J. Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, "Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser," Opt. Lett. 23, 201-203 (1998).
[CrossRef]

Schwarz, U. T.

Takeda, S.

Uchiyama, T.

M. Endo, S. Yamaguchi, T. Uchiyama, and T. Fujioka, "Numerical simulation of the W-Axicon type optical resonator for coaxial slab CO2 lasers," J. Phys. D 34, 68-77 (2001).

Viktorov, E. A.

Yamaguchi, S.

M. Endo, S. Yamaguchi, T. Uchiyama, and T. Fujioka, "Numerical simulation of the W-Axicon type optical resonator for coaxial slab CO2 lasers," J. Phys. D 34, 68-77 (2001).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. Kawai, Y. Asakawa, and K. Otsuka, "Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped microchip LiNdP4O12 lasers," IEEE J. Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. Nakano, "Thermal properties of a solid-state laser crystal LiNdP4O12," J. Appl. Phys. 52, 1239-1243 (1981).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

M. Endo, S. Yamaguchi, T. Uchiyama, and T. Fujioka, "Numerical simulation of the W-Axicon type optical resonator for coaxial slab CO2 lasers," J. Phys. D 34, 68-77 (2001).

Jpn. J. Appl. Phys. (1)

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, "Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing conditions," Jpn. J. Appl. Phys. 38, L515-517 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (4)

Catalogue, CRYSTECH Inc.

J. W. Goodman, ntroduction to Fourier OpticsI (Roberts & Company Publishers, 2004), Chap. 4.

J. W. Goodman, ntroduction to Fourier OpticsI (Roberts & Company Publishers, 2004) pp. 97-101.

A. E. Siegman, Lasers (University Science Books, 1986), p. 295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a). Experimental setup for selective excitations of IG modes. (b) Examples of IG modes in a LiNdP4O12 laser. Pump power P=293 mW. (c) Analytical solutions corresponding to (b).

Fig. 2.
Fig. 2.

Pump-dependent structural changes of lasing patterns for different azimuthal symmetries of the cavity.

Fig. 3.
Fig. 3.

Modal input-output characteristics, optical spectra, and far-field pattern changes as a function of pump power in a well-aligned LNP laser with θ=0.

Fig. 4.
Fig. 4.

(a). Higher-order IG mode patterns and their optical spectra in the LNP laser for different tilts at almost constant pump power. (b) Pump-dependent lasing patterns and their optical spectra for a fixed tilt.

Fig. 5.
Fig. 5.

Far-field patterns and scanning Fabry-Perot interferometer traces indicating single-frequency IG mode operations in the LNP laser.

Fig. 6.
Fig. 6.

Example IG modes observed in a Nd:GdVO4 laser for (a) different tilts and (b) different crystal positions in the pump direction (z-axis). The pump spot size decreased with Δz. (c) Analytic solutions corresponding to (a) and (b).

Fig. 7.
Fig. 7.

IGe 3,1 patterns observed at different propagation planes

Fig. 8.
Fig. 8.

Example of higher-order IG mode observed in the high pump-power regime and its structural change versus changes in the pump position and pump power. Corresponding analytical solutions are shown on the right.

Fig. 9.
Fig. 9.

Cavity configuration for azimuthal pumping and gain region used for simulations.

Fig. 10.
Fig. 10.

Simulated formation of IG mode lasing pattern starting from a random pattern.

Fig. 11.
Fig. 11.

(a). Numerical pattern changes leading to a stationary IG33 mode for an increased shift of the gain region from the lasing axis. (b) IG22 mode formation for an increased pump power.

Fig. 12.
Fig. 12.

Structural change featuring a pattern rotation against a slight change in the crystal position in the pump direction (z-axis).

Fig. 13.
Fig. 13.

(a). Mixed mode operations with increasing pump power. (b) Analytical result, superposition of two IGe 2,0 modes (ε=2).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

IG e p , m ( r , ε ) = C w 0 w ( z ) C m p ( i ξ , ε ) C m p ( η , ε ) exp [ r 2 w ( z ) 2 ]
× exp i [ kz + { kr 2 2 R ( z ) } ( p + 1 ) ψ z ( z ) ]
g i ( x , y ) = g i 0 ( x , y ) ( 1 + I ˜ i + ( x , y ) + I ˜ i ( x , y ) I s ( x , y ) ) ,
I ˜ i + ( x , y ) = ( 1 α ) i = 0 q α i I i + ( q i ) ,
I ˜ i ( x , y ) = ( 1 α ) i = 0 q α i I i ( q i ) .
E i out ( x , y ) = E i in ( x , y ) exp [ 1 2 g i ( x , y ) d ] ,
E q + 1 ( x , y ) E q ( x , y ) .

Metrics