Abstract

Abstract

Utilizing the cutoff characteristic of zero-order TE mode of the W type waveguide, we propose a cutoff modulator with tunable filtering characteristic in this paper. Simulation results show that: for the modulator based on GaAlAs/GaAs epitaxial layers, its cutoff wavelength can be shifted from 1.62 µm to 1.42 µm when the refractive index of the core layer is decreased by -0.01 in the modulation region of 800 µm; and the extinction ration at the wavelength of 1.55 µm reaches 40 dB. Compared with other traditional cutoff modulators, it has the advantages of more compact size, simpler structure and the potential for high intensity integration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Neyer and W. Sohler, "High-speed cutoff modulator using a Ti-diffused LiNbO3 channel waveguide," Appl. Phys. Lett 35, 256-258 (1979).
    [CrossRef]
  2. N. H. Zhu, E. Y. B. Pun, P. S. Chung, "Proposal for high extinction ratio LiNbO3 optical waveguide cutoff modulator," IEE Proc-Optoelectron 142, 248-250 (1995).
    [CrossRef]
  3. P. R. Ashley, W. S. C. Chang, "Improved mode extinction modulator using a Ti in-diffused LiNbO3 channel waveguide," Appl. Phys. Lett. 45, 840-842 (1984).
    [CrossRef]
  4. R. Chen and C. S. Tsai, "Thermally annealed single-mode proton-exchanged channel-waveguide cutoff modulator," Opt. Lett. 11, 546-548 (1986).
    [CrossRef] [PubMed]
  5. R. Chen and C. S. Tsai, "GaAs-GaAlAs heterostructure single-mode channel waveguide cutoff modulator and modulator array," IEEE J. Quantum. Electron 23, 2205-2209 (1987).
    [CrossRef]
  6. B. Li, Y. Zhang, L. Teng and Y. Zhao, "Symmetrical 1×2 digital photonic splitting switch with low electrical power consumption in SiGe waveguide," Opt. Express 13, 654-659 (2005).
    [CrossRef] [PubMed]
  7. S. S. Lee, Y. S. Jin, and Y. S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave. Technol 17, 2556-2561 (1999).
    [CrossRef]
  8. M. T. Tinker and J. B. Lee, "Thermo-optic photonic crystal light modulator," Appl. Phys. Lett 86, 221111 (2005).
    [CrossRef]
  9. M. J. Adams, An introduction to optical waveguides (John Wiley & Sons, 1981), Chap. 2.6.
  10. Y. T. Byun, K. H. Park, and S. H. Kim, "Single-mode GaAs/AlGaAs W waveguides with a low propagation loss," Appl. Opt 35,928-933 (1996).
    [CrossRef] [PubMed]
  11. R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
    [CrossRef]
  12. L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
    [CrossRef]
  13. S. Cao, L. Sun, J. Noad, R. James, D. Coulas, G. Lovell, E. Higgins, and K. Laliberte, "Multi-mode interference couplers for 2×2 high speed GaAs-GaAlAs electro-optic switches," Proc. SPIE 6116, 61160O-1-61160O-3 (2006).
  14. F. Ito, M. Matsuura, and T. Tanifuji, "A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55?m," IEEE J. Quantum. Electron 25, 1677-1681 (1989).
    [CrossRef]
  15. S. M. Sze, Physics of semiconductor devices (John Wiley and Sons, 1981), appendix. H.
  16. S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
    [CrossRef]

2005 (2)

2004 (2)

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

1999 (1)

S. S. Lee, Y. S. Jin, and Y. S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave. Technol 17, 2556-2561 (1999).
[CrossRef]

1996 (1)

Y. T. Byun, K. H. Park, and S. H. Kim, "Single-mode GaAs/AlGaAs W waveguides with a low propagation loss," Appl. Opt 35,928-933 (1996).
[CrossRef] [PubMed]

1995 (1)

N. H. Zhu, E. Y. B. Pun, P. S. Chung, "Proposal for high extinction ratio LiNbO3 optical waveguide cutoff modulator," IEE Proc-Optoelectron 142, 248-250 (1995).
[CrossRef]

1989 (1)

F. Ito, M. Matsuura, and T. Tanifuji, "A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55?m," IEEE J. Quantum. Electron 25, 1677-1681 (1989).
[CrossRef]

1988 (1)

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

1987 (1)

R. Chen and C. S. Tsai, "GaAs-GaAlAs heterostructure single-mode channel waveguide cutoff modulator and modulator array," IEEE J. Quantum. Electron 23, 2205-2209 (1987).
[CrossRef]

1986 (1)

1984 (1)

P. R. Ashley, W. S. C. Chang, "Improved mode extinction modulator using a Ti in-diffused LiNbO3 channel waveguide," Appl. Phys. Lett. 45, 840-842 (1984).
[CrossRef]

1979 (1)

A. Neyer and W. Sohler, "High-speed cutoff modulator using a Ti-diffused LiNbO3 channel waveguide," Appl. Phys. Lett 35, 256-258 (1979).
[CrossRef]

Abdalla, S.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Ashley, P. R.

P. R. Ashley, W. S. C. Chang, "Improved mode extinction modulator using a Ti in-diffused LiNbO3 channel waveguide," Appl. Phys. Lett. 45, 840-842 (1984).
[CrossRef]

Barrios, P.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Byun, Y. T.

Y. T. Byun, K. H. Park, and S. H. Kim, "Single-mode GaAs/AlGaAs W waveguides with a low propagation loss," Appl. Opt 35,928-933 (1996).
[CrossRef] [PubMed]

Cao, S.

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Celo, D.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Chang, W. S. C.

P. R. Ashley, W. S. C. Chang, "Improved mode extinction modulator using a Ti in-diffused LiNbO3 channel waveguide," Appl. Phys. Lett. 45, 840-842 (1984).
[CrossRef]

Chen, R.

R. Chen and C. S. Tsai, "GaAs-GaAlAs heterostructure single-mode channel waveguide cutoff modulator and modulator array," IEEE J. Quantum. Electron 23, 2205-2209 (1987).
[CrossRef]

R. Chen and C. S. Tsai, "Thermally annealed single-mode proton-exchanged channel-waveguide cutoff modulator," Opt. Lett. 11, 546-548 (1986).
[CrossRef] [PubMed]

Chung, P. S.

N. H. Zhu, E. Y. B. Pun, P. S. Chung, "Proposal for high extinction ratio LiNbO3 optical waveguide cutoff modulator," IEE Proc-Optoelectron 142, 248-250 (1995).
[CrossRef]

Coulas, D.

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Delage, A.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Deri, R. J.

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

Florez, L. T.

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

Golub, I.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Harbison, J. P.

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

He, J. J.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Higgins, E.

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Ito, F.

F. Ito, M. Matsuura, and T. Tanifuji, "A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55?m," IEEE J. Quantum. Electron 25, 1677-1681 (1989).
[CrossRef]

James, R.

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Janz, S.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Jin, Y. S.

S. S. Lee, Y. S. Jin, and Y. S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave. Technol 17, 2556-2561 (1999).
[CrossRef]

Kapon, E.

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

Kim, S. H.

Y. T. Byun, K. H. Park, and S. H. Kim, "Single-mode GaAs/AlGaAs W waveguides with a low propagation loss," Appl. Opt 35,928-933 (1996).
[CrossRef] [PubMed]

Lee, J. B.

M. T. Tinker and J. B. Lee, "Thermo-optic photonic crystal light modulator," Appl. Phys. Lett 86, 221111 (2005).
[CrossRef]

Lee, S. S.

S. S. Lee, Y. S. Jin, and Y. S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave. Technol 17, 2556-2561 (1999).
[CrossRef]

Li, B.

Lovell, G.

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Matsuura, M.

F. Ito, M. Matsuura, and T. Tanifuji, "A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55?m," IEEE J. Quantum. Electron 25, 1677-1681 (1989).
[CrossRef]

Mckinnon, R.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Mougy, S. E.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Neyer, A.

A. Neyer and W. Sohler, "High-speed cutoff modulator using a Ti-diffused LiNbO3 channel waveguide," Appl. Phys. Lett 35, 256-258 (1979).
[CrossRef]

Ng, S.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Noad, J.

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Park, K. H.

Y. T. Byun, K. H. Park, and S. H. Kim, "Single-mode GaAs/AlGaAs W waveguides with a low propagation loss," Appl. Opt 35,928-933 (1996).
[CrossRef] [PubMed]

Poole, P.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Pun, E. Y. B.

N. H. Zhu, E. Y. B. Pun, P. S. Chung, "Proposal for high extinction ratio LiNbO3 optical waveguide cutoff modulator," IEE Proc-Optoelectron 142, 248-250 (1995).
[CrossRef]

Raymond, S.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Seto, M.

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

Smy, T. J.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Sohler, W.

A. Neyer and W. Sohler, "High-speed cutoff modulator using a Ti-diffused LiNbO3 channel waveguide," Appl. Phys. Lett 35, 256-258 (1979).
[CrossRef]

Son, Y. S.

S. S. Lee, Y. S. Jin, and Y. S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave. Technol 17, 2556-2561 (1999).
[CrossRef]

Sun, L.

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Syrett, B.

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

Tanifuji, T.

F. Ito, M. Matsuura, and T. Tanifuji, "A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55?m," IEEE J. Quantum. Electron 25, 1677-1681 (1989).
[CrossRef]

Teng, L.

Tinker, M. T.

M. T. Tinker and J. B. Lee, "Thermo-optic photonic crystal light modulator," Appl. Phys. Lett 86, 221111 (2005).
[CrossRef]

Tsai, C. S.

R. Chen and C. S. Tsai, "GaAs-GaAlAs heterostructure single-mode channel waveguide cutoff modulator and modulator array," IEEE J. Quantum. Electron 23, 2205-2209 (1987).
[CrossRef]

R. Chen and C. S. Tsai, "Thermally annealed single-mode proton-exchanged channel-waveguide cutoff modulator," Opt. Lett. 11, 546-548 (1986).
[CrossRef] [PubMed]

Yun, C. P.

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

Zhang, Y.

Zhao, Y.

Zhu, N. H.

N. H. Zhu, E. Y. B. Pun, P. S. Chung, "Proposal for high extinction ratio LiNbO3 optical waveguide cutoff modulator," IEE Proc-Optoelectron 142, 248-250 (1995).
[CrossRef]

Appl. Opt (1)

Y. T. Byun, K. H. Park, and S. H. Kim, "Single-mode GaAs/AlGaAs W waveguides with a low propagation loss," Appl. Opt 35,928-933 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett (3)

R. J. Deri, E. Kapon, J. P. Harbison, M. Seto, C. P. Yun, and L. T. Florez, "Low-loss GaAs/AlGaAs waveguide phase modulator using a W-shaped index profile," Appl. Phys. Lett 53, 1803-1805 (1988).
[CrossRef]

M. T. Tinker and J. B. Lee, "Thermo-optic photonic crystal light modulator," Appl. Phys. Lett 86, 221111 (2005).
[CrossRef]

A. Neyer and W. Sohler, "High-speed cutoff modulator using a Ti-diffused LiNbO3 channel waveguide," Appl. Phys. Lett 35, 256-258 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

P. R. Ashley, W. S. C. Chang, "Improved mode extinction modulator using a Ti in-diffused LiNbO3 channel waveguide," Appl. Phys. Lett. 45, 840-842 (1984).
[CrossRef]

IEE Proc-Optoelectron (1)

N. H. Zhu, E. Y. B. Pun, P. S. Chung, "Proposal for high extinction ratio LiNbO3 optical waveguide cutoff modulator," IEE Proc-Optoelectron 142, 248-250 (1995).
[CrossRef]

IEEE J. Quantum. Electron (2)

R. Chen and C. S. Tsai, "GaAs-GaAlAs heterostructure single-mode channel waveguide cutoff modulator and modulator array," IEEE J. Quantum. Electron 23, 2205-2209 (1987).
[CrossRef]

F. Ito, M. Matsuura, and T. Tanifuji, "A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55?m," IEEE J. Quantum. Electron 25, 1677-1681 (1989).
[CrossRef]

IEEE Photon. Technol. Lett (1)

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delage, S. E. Mougy, I. Golub, J. J. He, S. Janz, R. Mckinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, "Carrier injection-based digital optical switch with reconfigurable output waveguide arms," IEEE Photon. Technol. Lett 16, 1038-1040 (2004).
[CrossRef]

J. Lightwave. Technol (1)

S. S. Lee, Y. S. Jin, and Y. S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave. Technol 17, 2556-2561 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

L. Sun, J. Noad, R. James, D. Coulas, S. Cao, G. Lovell, and E. Higgins, "Novel large cross-section single-mode AlGaAs/GaAs Asymmetric optical switch based on carrier injection effect," Proc. SPIE 5595, 439-446 (2004).
[CrossRef]

Other (3)

S. Cao, L. Sun, J. Noad, R. James, D. Coulas, G. Lovell, E. Higgins, and K. Laliberte, "Multi-mode interference couplers for 2×2 high speed GaAs-GaAlAs electro-optic switches," Proc. SPIE 6116, 61160O-1-61160O-3 (2006).

S. M. Sze, Physics of semiconductor devices (John Wiley and Sons, 1981), appendix. H.

M. J. Adams, An introduction to optical waveguides (John Wiley & Sons, 1981), Chap. 2.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Refractive index distribution of the w type five-layer symmetric slab waveguide and the cross-section of the cutoff modulator.

Fig. 2.
Fig. 2.

Intersecting points of the function with the abscissa axis for different structural parameters: (a) b/a=2; (b) c=2

Fig. 3.
Fig. 3.

Plots of cutoff wavelength of the zero-order TE mode in the W type GaAs/GaAlAs epitaxial layers versus Al contents in the confinement layer and cladding layer respectively. (a) cutoff wavelength versus Al content in the cladding layer, Al concentration in the confinement layer is 0.4, and b/a=2; (b) cutoff wavelength versus Al content in the confinement layer, Al concentration in cladding layer is 0.1, and 2a=0.8 µm.

Fig. 4.
Fig. 4.

Cutoff wavelength of the zero-order TE mode versus refractive index decrease Δn in the core layer. Labelling parameters give the different values of Al content in the cladding layer. In the calculation, Al content in the confinement layer is 0.35, b/a=2, 2a=0.7 µm

Fig. 5.
Fig. 5.

Wavelength response of the cutoff modulator for a set of different refractive index decrements Δn in the core layer.

Fig. 6.
Fig. 6.

The simulated modulating characteristic at wavelength of 1.31µm and 1.55µm. With the same injected current, Δn for the wavelength of 1.55 µm is 1.4 times bigger than that for 1.31 µm. The abscissa gives the value of Δn at 1.31 µm.

Fig. 7.
Fig. 7.

Wavelength response of the cutoff modulator for a set of different waveguide widths. The refractive index decrement in the core layer Δn is -0.01

Fig. 8.
Fig. 8.

Intensity plots of the light propagation at the wavelength of 1.55 µm. x,y and z denote horizontal direction, vertical direction and propagation direction respectively. Form the top down, Δn are 0,-0.005,-0.01 respectively. The monitor value is normalized propagation power.

Tables (1)

Tables Icon

Table 1. Influence of modulating various parameters of the W type GaAs/GaAlAs epitaxial layers on the cutoff wavelength of its zero-order TE mode.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u = N 2 + atan { t u tanh [ atanh ( w t ) + t ( b a 1 ) ] }
f ( v c ) = v c atan { c 2 1 tanh [ v c c 2 1 ( b a 1 ) ] } = 0
f ( v ) = 1 ( c 2 1 ) ( b a 1 ) cosh 2 [ c 2 1 ( b a 1 ) v ] + ( c 2 1 ) sinh 2 [ c 2 1 ( b a 1 ) v ]
f ( 0 ) = c 2 + b a c 2 b a < 0
Δ n = q 2 λ 2 8 π 2 c 2 ε 0 n 0 ( N e m * e + N h m * h )
J = Nqd τ
Δ α = q 3 λ 2 4 π 2 c 3 ε 0 n 0 ( N e m * e 2 μ e + N h m * h 2 μ h )
Δ α = 2 q ( m * e 2 μ e + m * h 2 μ h ) c μ e μ h m * h m * e ( m * e + m * e ) Δ n

Metrics