Abstract

Abstract

Corona discharges are generally characterized by a low optical density whose detection is often near or under the limits of interferometric techniques. In this paper, we propose a method of digital holographic interferometry that enables detection with enhanced sensitivity. This sensitivity increase is obtained by post-processing the digital holographic recordings with a set of point-wise image operations. The procedure is described mathematically and illustrated experimentally. Examples are given for an opaque object and for DC corona discharges generated in the symmetrical point-plane geometry.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Adamiak and P. Atten, "Simulation of corona discharge in point-plane configuration," J. Electrost. 61, 85-98 (2004).
    [CrossRef]
  2. N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006).
    [CrossRef]
  3. H. Kawamoto, H. Yasuda, and S. Umezu, "Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system," J. Electrost. 64, 400-407 (2006).
    [CrossRef]
  4. F. Soetomo, G. M. Colver, and K. Forouraghi, "Micro-force measurement of drag on a small flat plate in the presence of a corona discharge," J. Electrost. 64, 525-530 (2006).
    [CrossRef]
  5. J. Jarrige and P. Vervisch, "Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters," J. Appl. Phys. 99, 113303 (2006).
    [CrossRef]
  6. Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
    [CrossRef] [PubMed]
  7. K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
    [CrossRef]
  8. Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).
  9. Q. Yu, "Fringe multiplication methods for digital interferometric fringes," Appl. Opt. 28, 4323-4327 (1989).
    [CrossRef] [PubMed]
  10. K. Verma and B. Han, "Sensitivity enhancement of far-infrared Fizeau interferometry by digital image processing," Opt. Eng. 40, 1970-1977 (2001).
    [CrossRef]
  11. N. Demoli, J. Meštrovi?, and I. Sovi?, "Subtraction digital holography," Appl. Opt. 42, 798-804 (2003).
    [CrossRef] [PubMed]
  12. T. Colomb, F. Montfort, J. Kuehn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006).
    [CrossRef]
  13. N. Demoli and I. Demoli, "Dynamic modal characterization of musical instruments using digital holography," Opt. Express 13, 4812-4817 (2005).
    [CrossRef] [PubMed]
  14. N. Demoli, "Real-time monitoring of vibration fringe patterns by optical reconstruction of digital holograms: mode beating detection," Opt. Express 14, 2117-2122 (2006).
    [CrossRef] [PubMed]
  15. U. Schnars and W. P. O. Jüptner "Digital recording and reconstruction of holograms in hologram interferometry and shearography," Appl. Opt. 33, 4373-4377 (1994).
    [CrossRef] [PubMed]
  16. N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelenghts," Opt. Express 11, 767-774 (2003).
    [CrossRef] [PubMed]
  17. N. Demoli and D. Vukicevic, "Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry," Opt. Let. 29, 2423-2425 (2004).
    [CrossRef]
  18. S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggerwal, M. E. Gusev, "Highly sensitive pulsed digital holography for built-in defect analysis with a laser excitation," Appl. Opt. 40, 100-103 (2001).
    [CrossRef]
  19. L. Z. Cai, Q. Liu, X. L. Yang, Y. R. Wang, "Sensitivity adjustable contouring by digital holography and a virtual reference wavefront," Opt. Commun. 221, 49-54 (2003).
    [CrossRef]
  20. A. Asundi and V. R. Singh, "Amplitude and phase analysis in digital dynamic holography," Opt. Lett. 31, 2420-2422 (2006).
    [CrossRef] [PubMed]

2006 (8)

N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006).
[CrossRef]

H. Kawamoto, H. Yasuda, and S. Umezu, "Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system," J. Electrost. 64, 400-407 (2006).
[CrossRef]

F. Soetomo, G. M. Colver, and K. Forouraghi, "Micro-force measurement of drag on a small flat plate in the presence of a corona discharge," J. Electrost. 64, 525-530 (2006).
[CrossRef]

J. Jarrige and P. Vervisch, "Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters," J. Appl. Phys. 99, 113303 (2006).
[CrossRef]

K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
[CrossRef]

T. Colomb, F. Montfort, J. Kuehn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

N. Demoli, "Real-time monitoring of vibration fringe patterns by optical reconstruction of digital holograms: mode beating detection," Opt. Express 14, 2117-2122 (2006).
[CrossRef] [PubMed]

A. Asundi and V. R. Singh, "Amplitude and phase analysis in digital dynamic holography," Opt. Lett. 31, 2420-2422 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Demoli and I. Demoli, "Dynamic modal characterization of musical instruments using digital holography," Opt. Express 13, 4812-4817 (2005).
[CrossRef] [PubMed]

Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
[CrossRef] [PubMed]

2004 (2)

K. Adamiak and P. Atten, "Simulation of corona discharge in point-plane configuration," J. Electrost. 61, 85-98 (2004).
[CrossRef]

N. Demoli and D. Vukicevic, "Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry," Opt. Let. 29, 2423-2425 (2004).
[CrossRef]

2003 (3)

2001 (2)

S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggerwal, M. E. Gusev, "Highly sensitive pulsed digital holography for built-in defect analysis with a laser excitation," Appl. Opt. 40, 100-103 (2001).
[CrossRef]

K. Verma and B. Han, "Sensitivity enhancement of far-infrared Fizeau interferometry by digital image processing," Opt. Eng. 40, 1970-1977 (2001).
[CrossRef]

1994 (1)

1989 (1)

Adamiak, K.

K. Adamiak and P. Atten, "Simulation of corona discharge in point-plane configuration," J. Electrost. 61, 85-98 (2004).
[CrossRef]

Aggerwal, A. K.

Aleksandrov, N. L.

N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006).
[CrossRef]

Aspert, N.

Asundi, A.

Atten, P.

K. Adamiak and P. Atten, "Simulation of corona discharge in point-plane configuration," J. Electrost. 61, 85-98 (2004).
[CrossRef]

Bazelyan, E. M.

N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006).
[CrossRef]

Ben, Y.-H.

K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
[CrossRef]

Bourquin, S.

Cai, L. Z.

L. Z. Cai, Q. Liu, X. L. Yang, Y. R. Wang, "Sensitivity adjustable contouring by digital holography and a virtual reference wavefront," Opt. Commun. 221, 49-54 (2003).
[CrossRef]

Charriere, F.

Colomb, T.

Colver, G. M.

F. Soetomo, G. M. Colver, and K. Forouraghi, "Micro-force measurement of drag on a small flat plate in the presence of a corona discharge," J. Electrost. 64, 525-530 (2006).
[CrossRef]

Cuche, E.

D’Alessandro, F.

N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006).
[CrossRef]

Demoli, I.

Demoli, N.

Depeursinge, C.

Forouraghi, K.

F. Soetomo, G. M. Colver, and K. Forouraghi, "Micro-force measurement of drag on a small flat plate in the presence of a corona discharge," J. Electrost. 64, 525-530 (2006).
[CrossRef]

Gusev, M. E.

Han, B.

K. Verma and B. Han, "Sensitivity enhancement of far-infrared Fizeau interferometry by digital image processing," Opt. Eng. 40, 1970-1977 (2001).
[CrossRef]

Hishinuma, Y.

Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
[CrossRef] [PubMed]

Ishikawa, K.

Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
[CrossRef] [PubMed]

Jarrige, J.

J. Jarrige and P. Vervisch, "Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters," J. Appl. Phys. 99, 113303 (2006).
[CrossRef]

Jüptner, W. P. O.

Kawamoto, H.

H. Kawamoto, H. Yasuda, and S. Umezu, "Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system," J. Electrost. 64, 400-407 (2006).
[CrossRef]

Koizumi, A.

Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
[CrossRef] [PubMed]

Kuehn, J.

Liu, C.-J.

K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
[CrossRef]

Liu, Q.

L. Z. Cai, Q. Liu, X. L. Yang, Y. R. Wang, "Sensitivity adjustable contouring by digital holography and a virtual reference wavefront," Opt. Commun. 221, 49-54 (2003).
[CrossRef]

Marian, A.

Marquet, P.

Meštrovic, J.

Montfort, F.

Pedrini, G.

Raizer, Y. P.

N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006).
[CrossRef]

Schedin, S.

Schnars, U.

Singh, V. R.

Soetomo, F.

F. Soetomo, G. M. Colver, and K. Forouraghi, "Micro-force measurement of drag on a small flat plate in the presence of a corona discharge," J. Electrost. 64, 525-530 (2006).
[CrossRef]

Sovic, I.

Tatenuma, K.

Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
[CrossRef] [PubMed]

Tiziani, H. J.

Torzynski, M.

Umezu, S.

H. Kawamoto, H. Yasuda, and S. Umezu, "Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system," J. Electrost. 64, 400-407 (2006).
[CrossRef]

Verma, K.

K. Verma and B. Han, "Sensitivity enhancement of far-infrared Fizeau interferometry by digital image processing," Opt. Eng. 40, 1970-1977 (2001).
[CrossRef]

Vervisch, P.

J. Jarrige and P. Vervisch, "Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters," J. Appl. Phys. 99, 113303 (2006).
[CrossRef]

Vukicevic, D.

N. Demoli and D. Vukicevic, "Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry," Opt. Let. 29, 2423-2425 (2004).
[CrossRef]

N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelenghts," Opt. Express 11, 767-774 (2003).
[CrossRef] [PubMed]

Wang, Y. R.

L. Z. Cai, Q. Liu, X. L. Yang, Y. R. Wang, "Sensitivity adjustable contouring by digital holography and a virtual reference wavefront," Opt. Commun. 221, 49-54 (2003).
[CrossRef]

Yamada, Y.

Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
[CrossRef] [PubMed]

Yang, X. L.

L. Z. Cai, Q. Liu, X. L. Yang, Y. R. Wang, "Sensitivity adjustable contouring by digital holography and a virtual reference wavefront," Opt. Commun. 221, 49-54 (2003).
[CrossRef]

Yasuda, H.

H. Kawamoto, H. Yasuda, and S. Umezu, "Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system," J. Electrost. 64, 400-407 (2006).
[CrossRef]

Yu, K.-L.

K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
[CrossRef]

Yu, Q.

Zhang, Y.-P.

K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
[CrossRef]

Zou, J.-J.

K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
[CrossRef]

Appl. Opt. (4)

Diamond Relat. Mater. (1)

K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006).
[CrossRef]

J. Appl. Phys. (1)

J. Jarrige and P. Vervisch, "Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters," J. Appl. Phys. 99, 113303 (2006).
[CrossRef]

J. Electrost. (4)

K. Adamiak and P. Atten, "Simulation of corona discharge in point-plane configuration," J. Electrost. 61, 85-98 (2004).
[CrossRef]

N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006).
[CrossRef]

H. Kawamoto, H. Yasuda, and S. Umezu, "Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system," J. Electrost. 64, 400-407 (2006).
[CrossRef]

F. Soetomo, G. M. Colver, and K. Forouraghi, "Micro-force measurement of drag on a small flat plate in the presence of a corona discharge," J. Electrost. 64, 525-530 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. Z. Cai, Q. Liu, X. L. Yang, Y. R. Wang, "Sensitivity adjustable contouring by digital holography and a virtual reference wavefront," Opt. Commun. 221, 49-54 (2003).
[CrossRef]

Opt. Eng. (1)

K. Verma and B. Han, "Sensitivity enhancement of far-infrared Fizeau interferometry by digital image processing," Opt. Eng. 40, 1970-1977 (2001).
[CrossRef]

Opt. Express (3)

Opt. Let. (1)

N. Demoli and D. Vukicevic, "Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry," Opt. Let. 29, 2423-2425 (2004).
[CrossRef]

Opt. Lett. (1)

Radiat. Prot. Dosimetry (1)

Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005).
[CrossRef] [PubMed]

Other (1)

Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for recording digital holograms of the corona discharge.

Fig. 2.
Fig. 2.

Scheme of the corona discharge configuration.

Fig. 3.
Fig. 3.

Basic information: the intensity of the reconstructed wavefront (left) and the phase shift (right).

Fig. 4.
Fig. 4.

Sensitivity enhancement: (a) the standard interferometric fringes of a deformation, (b) the same deformation with double sensitivity, (c) the profile of (a), and (d) the profile of (b).

Fig. 5.
Fig. 5.

Sensitivity enhancement in the case of a very weak deformation: the reconstructions (left) and profiles (right). (a) the undeformed object, (b) the sub-fringe deformation with the standard holographic sensitivity, (c) the same deformation with double sensitivity, and (d) the same deformation with four times increased sensitivity.

Fig. 6.
Fig. 6.

Sensitivity enhancement for the corona discharge, 10 kV, 10 mA. Left: the reconstruction without corona, middle: standard interferometric fringes of a deformation, right: the same deformation with double sensitivity.

Fig. 7.
Fig. 7.

As in Fig. 6, but for 130 µA.

Fig. 8.
Fig. 8.

As in Fig. 6, but for 75 µA.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y ) = δ ( x X , y Y ) + s ( x , y ) ,
U ( u , v ) exp [ i π λ d ( u 2 + v 2 ) ] F { U ( x , y ) exp [ i ξ ( x , y ) ] } ,
I ( x , y ) = F 1 { E ( u , v ) } 2 .
E ( u , v ) F { s ( x , y ) exp [ i ξ ( x , y ) ] } ,
E ( u , v ) F { s ( x , y ) exp [ i Δ ϕ ( x , y ) + i ξ ( x , y ) ] } .
I 0 + ( x , y ) = I s ( x , y ) C 0 + { 1 + cos [ Δ φ ( x , y ) ] } ,
I s ( x , y ) = F 1 { E ( u , v ) } 2
exp [ i Δ ϕ ( x , y ) ] = F 1 { E ( u , v ) } F 1 { E ( u , v ) } .
I 0 ( x , y ) = I s ( x , y ) C 0 C 0 { 1 cos [ Δ φ ( x , y ) ] } ,
I 1 + ( x , y ) = I s 2 ( x , y ) C 1 + { 1 + cos [ 2 Δ φ ( x , y ) ] } .
I 1 ( x , y ) = I s 2 ( x , y ) C 1 C 1 { 1 cos [ 2 Δ φ ( x , y ) ] } ,
I 2 + ( x , y ) = I s 4 ( x , y ) C 2 + { 1 + cos [ 4 Δ φ ( x , y ) ] } .
I k + ( x , y ) = [ I s ( x , y ) ] 2 k C k + { 1 + cos [ 2 k Δ φ ( x , y ) ] } , k = 0 , 1 , 2 , ,
Δ L ( x , y ) = 2 x R Δ n ( r , y ) rdr ( r 2 x 2 ) ,
Δ L ( x , y ) = λ 2 k R k ( x , y ) .

Metrics