Abstract

Abstract

Planar integrated free-space optical systems are well suited for a variety of applications, such as optical interconnects and security devices. Here, we demonstrate dynamic functionality of such microoptical systems by the integration of adaptive liquid-crystal-devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jahns and A. Huang, “Planar integration of free space optical components,” Appl. Opt. 28, 1602–1605 (1994).
    [Crossref]
  2. S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 290, 69–74 (2002).
    [Crossref]
  3. M. Gruber, J. Jahns, E. Joudi, and S. Sinzinger, “Practical Realization of Massively Parallel Fiber -Free-Space Optical Interconnects,” Appl. Opt. 40, 2902–2908 (2001).
    [Crossref]
  4. A. F. Naumov, M. Y. Loktev, I. R. Guranik, and G. V. Vdovin, “Liquid crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [Crossref]
  5. A. F. Naumov, G. D. Love, M. Yu., F. L. Loktev, and Vladimirov, “Control optimisation of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
    [Crossref] [PubMed]
  6. P. J.W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addresses liquid crystal lenses,” Liq. Cryst. VIII, I.-C. Khoo ed., Proc. SPIE 5518, 136–143 (2004).
  7. G. D. Love, J. V. Major, and A. Purvis, “Liquid crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [PubMed]
  8. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, “Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells,” Opt. Express 14, 4525–4537 (2006).
    [Crossref] [PubMed]
  9. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
    [Crossref]
  10. G. D. Love, J. V. Major, and A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [PubMed]
  11. M. Amberg and S. Sinzinger, “Design considerations for efficient Planar Optical Systems,” Opt. Commun. 267, 74–78 (2006).
    [Crossref]
  12. B. Wang, M. Ye, and S. Sasumo, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photonics Technology Lett. 18, 79–81 (2006).
  13. Q. Cao, M. Gruber, and J. Jahns, “Generalized confocal imaging systems for free-space optical interconnections,” Appl. Opt. 43, 3306–3309 (2004).
    [Crossref] [PubMed]
  14. M. Testorf and J. Jahns, “Imaging properties of planar-integrated micro-optics,” J. Opt. Soc. Am. A 16, 1175–1183 (1999).
    [Crossref]
  15. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
    [Crossref] [PubMed]
  16. S. Sinzinger and J. Jahns, “Integrated microoptical imaging system with high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
    [Crossref] [PubMed]
  17. J. Jahns, V. Arrizn, D. Hagedorn, S. Kinne, and S. Sinzinger, “Sensing applications of planar integrated free-space optics with broadband illumination”, poster presentation at “Conference on Light-Emitting Diodes: Research, Manufacturing, and Applications II”, “SPIE International Symposium on Optoelectronics,” San Jose, CA, USA (1998).

2006 (3)

M. Amberg and S. Sinzinger, “Design considerations for efficient Planar Optical Systems,” Opt. Commun. 267, 74–78 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sasumo, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photonics Technology Lett. 18, 79–81 (2006).

P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, “Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells,” Opt. Express 14, 4525–4537 (2006).
[Crossref] [PubMed]

2004 (2)

Q. Cao, M. Gruber, and J. Jahns, “Generalized confocal imaging systems for free-space optical interconnections,” Appl. Opt. 43, 3306–3309 (2004).
[Crossref] [PubMed]

P. J.W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addresses liquid crystal lenses,” Liq. Cryst. VIII, I.-C. Khoo ed., Proc. SPIE 5518, 136–143 (2004).

2002 (1)

S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 290, 69–74 (2002).
[Crossref]

2001 (1)

2000 (1)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

1999 (2)

1998 (1)

1997 (2)

1994 (3)

Amberg, M.

M. Amberg and S. Sinzinger, “Design considerations for efficient Planar Optical Systems,” Opt. Commun. 267, 74–78 (2006).
[Crossref]

Arrizn, V.

J. Jahns, V. Arrizn, D. Hagedorn, S. Kinne, and S. Sinzinger, “Sensing applications of planar integrated free-space optics with broadband illumination”, poster presentation at “Conference on Light-Emitting Diodes: Research, Manufacturing, and Applications II”, “SPIE International Symposium on Optoelectronics,” San Jose, CA, USA (1998).

Cao, Q.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Gruber, M.

Guranik, I. R.

Hagedorn, D.

J. Jahns, V. Arrizn, D. Hagedorn, S. Kinne, and S. Sinzinger, “Sensing applications of planar integrated free-space optics with broadband illumination”, poster presentation at “Conference on Light-Emitting Diodes: Research, Manufacturing, and Applications II”, “SPIE International Symposium on Optoelectronics,” San Jose, CA, USA (1998).

Hands, P. J. W.

Hands, P. J.W.

P. J.W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addresses liquid crystal lenses,” Liq. Cryst. VIII, I.-C. Khoo ed., Proc. SPIE 5518, 136–143 (2004).

Huang, A.

Ito, H.

Jahns, J.

Joudi, E.

Kinne, S.

J. Jahns, V. Arrizn, D. Hagedorn, S. Kinne, and S. Sinzinger, “Sensing applications of planar integrated free-space optics with broadband illumination”, poster presentation at “Conference on Light-Emitting Diodes: Research, Manufacturing, and Applications II”, “SPIE International Symposium on Optoelectronics,” San Jose, CA, USA (1998).

Kirby, A. K.

P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, “Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells,” Opt. Express 14, 4525–4537 (2006).
[Crossref] [PubMed]

P. J.W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addresses liquid crystal lenses,” Liq. Cryst. VIII, I.-C. Khoo ed., Proc. SPIE 5518, 136–143 (2004).

Loktev, F. L.

Loktev, M. Y.

Love, G. D.

Major, J. V.

Masuda, S.

Naumov, A. F.

Nose, T.

Purvis, A.

Sasumo, S.

B. Wang, M. Ye, and S. Sasumo, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photonics Technology Lett. 18, 79–81 (2006).

Sato, S.

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Sinzinger, S.

M. Amberg and S. Sinzinger, “Design considerations for efficient Planar Optical Systems,” Opt. Commun. 267, 74–78 (2006).
[Crossref]

S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 290, 69–74 (2002).
[Crossref]

M. Gruber, J. Jahns, E. Joudi, and S. Sinzinger, “Practical Realization of Massively Parallel Fiber -Free-Space Optical Interconnects,” Appl. Opt. 40, 2902–2908 (2001).
[Crossref]

S. Sinzinger and J. Jahns, “Integrated microoptical imaging system with high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[Crossref] [PubMed]

J. Jahns, V. Arrizn, D. Hagedorn, S. Kinne, and S. Sinzinger, “Sensing applications of planar integrated free-space optics with broadband illumination”, poster presentation at “Conference on Light-Emitting Diodes: Research, Manufacturing, and Applications II”, “SPIE International Symposium on Optoelectronics,” San Jose, CA, USA (1998).

Takahashi, S.

Tatarkova, S. A.

Testorf, M.

Vdovin, G. V.

Vladimirov,

Wang, B.

B. Wang, M. Ye, and S. Sasumo, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photonics Technology Lett. 18, 79–81 (2006).

Ye, M.

B. Wang, M. Ye, and S. Sasumo, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photonics Technology Lett. 18, 79–81 (2006).

Yu., M.

Appl. Opt. (5)

IEEE Photonics Technology Lett. (1)

B. Wang, M. Ye, and S. Sasumo, “Polarization-independent liquid crystal lens with four liquid crystal layers,” IEEE Photonics Technology Lett. 18, 79–81 (2006).

J. Opt. Soc. Am. A (1)

Liq. Cryst. VIII, I.-C. Khoo ed., Proc. SPIE (1)

P. J.W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addresses liquid crystal lenses,” Liq. Cryst. VIII, I.-C. Khoo ed., Proc. SPIE 5518, 136–143 (2004).

Opt. Commun. (3)

S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 290, 69–74 (2002).
[Crossref]

M. Amberg and S. Sinzinger, “Design considerations for efficient Planar Optical Systems,” Opt. Commun. 267, 74–78 (2006).
[Crossref]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

J. Jahns, V. Arrizn, D. Hagedorn, S. Kinne, and S. Sinzinger, “Sensing applications of planar integrated free-space optics with broadband illumination”, poster presentation at “Conference on Light-Emitting Diodes: Research, Manufacturing, and Applications II”, “SPIE International Symposium on Optoelectronics,” San Jose, CA, USA (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

a) Set-up of the modal LC-lens added to the PIFSO and b) Set-up of the prism-coupled adaptive PIFSO experiment; DL 1 and DL 2 mirror coated diff. lenses and M1–M4 plane mirrors

Fig. 2.
Fig. 2.

Target resistances of the high resistance layer and values for different electrode material: A) Baytron CPP 105D B) CPP 105D, after 1h at 300°C in vacuum oven C) CPP 105D, aged on hotplate 300°C D) Baytron CPG 130.6 E) Baytron AI 4083

Fig. 3.
Fig. 3.

Schematic representation of an unfolded generalized confocal imaging system according to Ref. [8]

Fig. 4.
Fig. 4.

Fig. 4. Spotdiagrams for a) d 2=f and LC–lens switched off, b) for d 2=f+2.4mm and LC–lens switched off and c) d 2=f+2.4mm and LC–lens switched on with a maximum phase shift of 40×2π.

Fig. 5.
Fig. 5.

Ratio of the focal length in x- and y-direction (bold line) of the LC-lens and the needed phase shift in ×2π for a defocus of 0mm…2.4mm (dotted line)

Fig. 6.
Fig. 6.

Spots from the experimental set-up for focus plane tuning. a) spot captured by a CCD camera at image plane 1, b) captured spot for the system defocused to image plane 2 and c) captured spot corrected with the LC-lens at image plane 2. Figures d,e and f show the intensity plots generated with Matlab from the data of the CCD camera for the spots in a), b), and c) respectively.

Fig. 7.
Fig. 7.

Spots from the experimental set-up for beam deflection. a) intesity plot of the non deflected spot1 and of the deflected spot 2 b) spots captured taken by a CCD camera (spots are copied to a single picture).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

(x,y)=( 1,1 1,0 1,1 0,1 0,0 0,1 1,1 1,0 1,1 )

Metrics