Abstract

Abstract

Efficient transmission of light through a metal layer has become a key issue for a variety of applications including light-emitting diodes and solar cells. We report here on a novel strategy where localized and extended surface plasmons are combined to maximize the fluorescence transmission through a metallic film. We show that the dispersion of an artificial material formed by an array of metal nanoparticles coupled to a flat metal layer can be engineered to make the metal film, in a specific direction, 100% transmissive.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  2. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106(1997).
    [CrossRef] [PubMed]
  3. A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
    [CrossRef]
  4. C. Genet and T. W. Ebbesen, "Light in tiny hole," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  5. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  7. K. H. Drexhage, Progress in Optics, (Elsevier, 1974) Vol. 12, pp. 63.
  8. R. P. Chance, A. Prock, and R. Silbey, Advances in Chemical Physics (Wiley, 1978) Vol. 37, pp 1.
  9. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
    [CrossRef] [PubMed]
  10. R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841(1986).
    [CrossRef] [PubMed]
  11. S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004).
    [CrossRef] [PubMed]
  12. J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
    [CrossRef]
  13. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002(2006).
    [CrossRef] [PubMed]
  14. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  15. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005).
    [CrossRef]
  16. L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B. 74, 155407 (2006).
    [CrossRef]
  17. A. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
    [CrossRef]
  18. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024 (1996).
    [CrossRef]
  19. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
    [CrossRef]
  20. G. Lévêque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971-9981 (2006).
    [CrossRef] [PubMed]
  21. H. R. Stuart and D. G. Hall, "Enhanced Dipole-Dipole Interaction between Elementary Radiators near a surface," Phys. Rev. Lett. 80, 5663-5666 (1998).
    [CrossRef]

2007 (1)

C. Genet and T. W. Ebbesen, "Light in tiny hole," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

2006 (6)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002(2006).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B. 74, 155407 (2006).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

G. Lévêque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971-9981 (2006).
[CrossRef] [PubMed]

2005 (4)

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1998 (1)

H. R. Stuart and D. G. Hall, "Enhanced Dipole-Dipole Interaction between Elementary Radiators near a surface," Phys. Rev. Lett. 80, 5663-5666 (1998).
[CrossRef]

1997 (2)

A. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
[CrossRef]

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106(1997).
[CrossRef] [PubMed]

1996 (1)

1986 (1)

R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841(1986).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002(2006).
[CrossRef] [PubMed]

Badenes, G.

Barnes, W. L.

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002(2006).
[CrossRef] [PubMed]

Blaikie, R. J.

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B. 74, 155407 (2006).
[CrossRef]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Cesario, J.

Christ, A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Duyne, R. P. V.

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny hole," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106(1997).
[CrossRef] [PubMed]

Enoch, S.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Feng, J.

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny hole," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Giessen, H.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Gippius, N. A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Gruhlke, R. W.

R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841(1986).
[CrossRef] [PubMed]

Hakanson, U.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, "Enhanced Dipole-Dipole Interaction between Elementary Radiators near a surface," Phys. Rev. Lett. 80, 5663-5666 (1998).
[CrossRef]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841(1986).
[CrossRef] [PubMed]

Holland, W. R.

R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841(1986).
[CrossRef] [PubMed]

Kawata, S.

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
[CrossRef] [PubMed]

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Kühn, S.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lévêque, G.

Li, A. L.

Li, L.

Lin, L.

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B. 74, 155407 (2006).
[CrossRef]

Martin, O. J. F.

McFarland, A. D.

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106(1997).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002(2006).
[CrossRef] [PubMed]

Okamoto, T.

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Pendry, J. B.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Quidant, R.

Reeves, R. J.

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B. 74, 155407 (2006).
[CrossRef]

Rogobete, L.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
[CrossRef] [PubMed]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
[CrossRef] [PubMed]

Stuart, H. R.

H. R. Stuart and D. G. Hall, "Enhanced Dipole-Dipole Interaction between Elementary Radiators near a surface," Phys. Rev. Lett. 80, 5663-5666 (1998).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Wedge, S.

Zentgraf, T.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Lett. (1)

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Nature (2)

C. Genet and T. W. Ebbesen, "Light in tiny hole," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B. (2)

L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B. 74, 155407 (2006).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

H. R. Stuart and D. G. Hall, "Enhanced Dipole-Dipole Interaction between Elementary Radiators near a surface," Phys. Rev. Lett. 80, 5663-5666 (1998).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002(2006).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005).
[CrossRef] [PubMed]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841(1986).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106(1997).
[CrossRef] [PubMed]

Other (2)

K. H. Drexhage, Progress in Optics, (Elsevier, 1974) Vol. 12, pp. 63.

R. P. Chance, A. Prock, and R. Silbey, Advances in Chemical Physics (Wiley, 1978) Vol. 37, pp 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(A) Configuration under study. (B) Emission spectrum of MDMO-PPV and extinction spectrum of the LSP/SPP system when both the LSP and the SPP resonances match the emission band of the copolymer (particles with 125 nm diameter, 40 nm height and grating period of D=300 nm). (Inset) Extinction spectrum of the system for LSP and SPP nonmatching conditions (D=200 nm).

Fig. 2.
Fig. 2.

(A-D) Experimental enhanced emission dispersion diagrams for samples with different parameters for the array of gold particles (40-nm-high and 125 - nm -diameter): (A) D=300 nm and p- polarization; (B) D=275 nm and p- polarization; (C) D=200 nm and ppolarization; (D) D=300 nm and s- polarization. (E) Fluorescence images taken in the (573–587 nm) wavelength band for 200×200 µm2 arrays of gold particles (D=300 nm and D=200 nm) on top of the polymer/Ag/SiO2 system, surrounded by bare polymer/Ag/SiO2 portions. (F) Calculated enhanced emission dispersion diagram for D=300 nm and p- polarization.

Fig. 3.
Fig. 3.

Evolution of the MDMO-PPV emission intensity in the normal direction with (A) the grating period D (fixed particles diameter d=125 nm) and (B) the particles diameter d (fixed period D=300 nm). (C) Evolution of the enhancement emission factor γ with the SiO2 thickness. For thicknesses greater than 10 nm, the experimental points are fitted with an exponential decay (decay length=30 nm) plotted in red dashed line.

Fig. 4.
Fig. 4.

Estimation of the efficiency of the LSP/SPP configuration. The four plots give the measured normal emission spectra for the four sketched configurations.

Fig. 5.
Fig. 5.

Angular fluorescence emission diagram in s- and p-polarizations at 610 nm. For each polarization state, the blue curve corresponds to the emission of the copolymer film through the flat silver layer.

Metrics