Abstract

Abstract

In this paper, we propose a narrowband DWDM filter structure, whose reflection band characteristics, meets the ITU-T standard. The proposed filter structure is based on Fibonacci quasi-periodic structures composed of multilayers with large index differences. Studying the effects of the optical and geometrical parameters of Fibonacci quasi-periodic structures on its filtering properties, we have realized that to achieve the ITU-T standard, we need to cascade two successive structures both with the same generation numbers j=4 and orders n=25 and apodized refractive indices. The apodization process helps to minimize the stop band sidelobes. We have also demonstrated that beside Fibonacci’s order, n, the layers dimensions, and their refractive index ratios are the main design parameters.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dense wavelength-division multiplexing dispersion compensators based on chirped and apodized Fibonacci structures: CA-FC(j,n)

Saeed Golmohammadi, Mohammad Kazem Moravvej-Farshi, Ali Rostami, and Abbas Zarifkar
Appl. Opt. 47(35) 6477-6487 (2008)

Photonic bandgap structure and long-range periodicity of a cumulative Fibonacci lattice

Xiong Hui and Chenhui Yu
Photon. Res. 5(1) 11-14 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Proc. Optical Interference Coating (OSA), Banff, Canada, (2001).
  2. L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
    [Crossref]
  3. J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).
  4. L. Wei and J. W. Y. Li, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15, 6439–6457(2007).
    [Crossref] [PubMed]
  5. J. Floriot, F. Lemarchand, and M. Lequime, “Solid-spaced filters: an alternative for narrow bandpass applications,” Appl. Opt. 45, 1349–1355 (2006).
    [Crossref] [PubMed]
  6. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
    [Crossref]
  7. R. Slavík and S. La. Rochelle, “Large-Band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” Electron. Lett. 14, 1704–1706 (2002).
  8. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in Optics: Quasi-periodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
    [Crossref] [PubMed]
  9. C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7, 383–391 (1998).
    [Crossref]
  10. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
    [Crossref] [PubMed]
  11. D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic onedimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
    [Crossref]
  12. R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
    [Crossref]
  13. E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330–3332 (1998).
    [Crossref]
  14. E. Macia, “Exploiting quasiperiodic order in the design of optical devices,” Phys. Rev. B 63, 205421-8 (2001).
    [Crossref]
  15. E. Macia, “Optical Applications of Fibonacci Dielectric multilayers,” Ferroelectrics 250, 401–404 (2001).
    [Crossref]
  16. X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” J. Phys. Rev. B 59, 4546–4548 (1999).
    [Crossref]
  17. X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” J. Phys. Rev. E 59, 245104-2 (2001).
  18. H. Angus Macleod, Thin Film Optical Filter, 2nd edition, (McGraw-Hill Publishing Company, New York, 1989).
  19. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped Fiber Gratings for Optical Communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
    [Crossref]
  20. N. Yokoi, T. Fujisawa, K. Satoh, and M. Koshiba, “Apodized photonic crystal waveguide gratings,” Opt. Express 14, 4459–4468 (2006).
    [Crossref] [PubMed]
  21. C. Greiner, T. W. Mossberg, and D. Iazikov, “Bandpass engineering of lithographically scribed channelwaveguide Bragg gratings” Opt. Lett. 29, 806–808 (2004).
    [Crossref] [PubMed]
  22. V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
    [Crossref]
  23. K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
    [Crossref]
  24. J. Li and S. T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96, 6253–6258 (2004).
    [Crossref]
  25. T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, “Optical glass with refractive index of 1.75 and high specific refraction for spectacle optics” Glass Ceram. 52, 143–146 (1995).
    [Crossref]
  26. G. P. HarmonJ. P. Harmon and G. K. Noren, “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, eds., (American Chemical Society, 2001) pp. 1–23.
  27. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
    [Crossref] [PubMed]

2007 (1)

2006 (2)

2004 (2)

C. Greiner, T. W. Mossberg, and D. Iazikov, “Bandpass engineering of lithographically scribed channelwaveguide Bragg gratings” Opt. Lett. 29, 806–808 (2004).
[Crossref] [PubMed]

J. Li and S. T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96, 6253–6258 (2004).
[Crossref]

2002 (2)

R. Slavík and S. La. Rochelle, “Large-Band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” Electron. Lett. 14, 1704–1706 (2002).

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

2001 (5)

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic onedimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

E. Macia, “Exploiting quasiperiodic order in the design of optical devices,” Phys. Rev. B 63, 205421-8 (2001).
[Crossref]

E. Macia, “Optical Applications of Fibonacci Dielectric multilayers,” Ferroelectrics 250, 401–404 (2001).
[Crossref]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” J. Phys. Rev. E 59, 245104-2 (2001).

1999 (3)

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” J. Phys. Rev. B 59, 4546–4548 (1999).
[Crossref]

V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
[Crossref]

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

1998 (4)

K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
[Crossref]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped Fiber Gratings for Optical Communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330–3332 (1998).
[Crossref]

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7, 383–391 (1998).
[Crossref]

1997 (1)

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[Crossref]

1995 (2)

T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, “Optical glass with refractive index of 1.75 and high specific refraction for spectacle optics” Glass Ceram. 52, 143–146 (1995).
[Crossref]

H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
[Crossref] [PubMed]

1994 (1)

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

1987 (1)

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in Optics: Quasi-periodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Abdulhalim, I.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic onedimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Angus Macleod, H.

H. Angus Macleod, Thin Film Optical Filter, 2nd edition, (McGraw-Hill Publishing Company, New York, 1989).

Artamonova, M. V.

T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, “Optical glass with refractive index of 1.75 and high specific refraction for spectacle optics” Glass Ceram. 52, 143–146 (1995).
[Crossref]

Berger, V.

V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
[Crossref]

Bertolotti, M.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7, 383–391 (1998).
[Crossref]

Chen, L. R.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

Chon, J.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

Cooper, D. J. F.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

Ennser, K.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped Fiber Gratings for Optical Communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Floriot, J.

Fu, X.

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” J. Phys. Rev. B 59, 4546–4548 (1999).
[Crossref]

Fujisawa, T.

Gellermann, W.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[Crossref]

Greiner, C.

Gu, X.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

Harmon, G. P.

G. P. HarmonJ. P. Harmon and G. K. Noren, “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, eds., (American Chemical Society, 2001) pp. 1–23.

Hu, A.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” J. Phys. Rev. E 59, 245104-2 (2001).

Huang, X. Q.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” J. Phys. Rev. E 59, 245104-2 (2001).

Iazikov, D.

Iguchi, K.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in Optics: Quasi-periodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Jian, B.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

Jian, S. S.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

Jiang, S. S.

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” J. Phys. Rev. E 59, 245104-2 (2001).

Kayama, S.

K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
[Crossref]

Kohmoto, M.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in Optics: Quasi-periodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Koshiba, M.

Kozhevatkin, S. G.

T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, “Optical glass with refractive index of 1.75 and high specific refraction for spectacle optics” Glass Ceram. 52, 143–146 (1995).
[Crossref]

Kurodja, J.

K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
[Crossref]

Laming, R. I.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped Fiber Gratings for Optical Communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Lemarchand, F.

Lequime, M.

Li, J.

J. Li and S. T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96, 6253–6258 (2004).
[Crossref]

Li, J. W. Y.

Liu, Y.

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” J. Phys. Rev. B 59, 4546–4548 (1999).
[Crossref]

Loka, H. S.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

Luo, A.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

Lusk, D.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic onedimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Macia, E.

E. Macia, “Exploiting quasiperiodic order in the design of optical devices,” Phys. Rev. B 63, 205421-8 (2001).
[Crossref]

E. Macia, “Optical Applications of Fibonacci Dielectric multilayers,” Ferroelectrics 250, 401–404 (2001).
[Crossref]

E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330–3332 (1998).
[Crossref]

Masciulli, P.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7, 383–391 (1998).
[Crossref]

Mazzer, M.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

Molev, V. M.

T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, “Optical glass with refractive index of 1.75 and high specific refraction for spectacle optics” Glass Ceram. 52, 143–146 (1995).
[Crossref]

Mossberg, T. W.

Nedospasova, T. A.

T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, “Optical glass with refractive index of 1.75 and high specific refraction for spectacle optics” Glass Ceram. 52, 143–146 (1995).
[Crossref]

O’Brien, N. A.

R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Proc. Optical Interference Coating (OSA), Banff, Canada, (2001).

Ohshika, K.

K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
[Crossref]

Peng, R. W.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” J. Phys. Rev. E 59, 245104-2 (2001).

Peters, P.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

Placido, F.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic onedimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Qiu, F.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

Rochelle, S. La.

R. Slavík and S. La. Rochelle, “Large-Band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” Electron. Lett. 14, 1704–1706 (2002).

Sargent, R. B.

R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Proc. Optical Interference Coating (OSA), Banff, Canada, (2001).

Sasakiy, Y.

K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
[Crossref]

Satoh, K.

Sibilia, C.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7, 383–391 (1998).
[Crossref]

Slavík, R.

R. Slavík and S. La. Rochelle, “Large-Band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” Electron. Lett. 14, 1704–1706 (2002).

Smith, P. W. E.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

Sullivan, K.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

Sutherland, B.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in Optics: Quasi-periodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Takashashi, H.

Tam, R.

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

Taylor, P. C.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

Wang, M.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

Wei, L.

Wu, S. T.

J. Li and S. T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96, 6253–6258 (2004).
[Crossref]

Yanazawa, H.

K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
[Crossref]

Yang, X.

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” J. Phys. Rev. B 59, 4546–4548 (1999).
[Crossref]

Yokoi, N.

Zeng, A.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

Zervas, M. N.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped Fiber Gratings for Optical Communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002).
[Crossref]

E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330–3332 (1998).
[Crossref]

Electron. Lett. (2)

R. Slavík and S. La. Rochelle, “Large-Band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” Electron. Lett. 14, 1704–1706 (2002).

L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999).
[Crossref]

Ferroelectrics (1)

E. Macia, “Optical Applications of Fibonacci Dielectric multilayers,” Ferroelectrics 250, 401–404 (2001).
[Crossref]

Glass Ceram. (1)

T. A. Nedospasova, S. G. Kozhevatkin, M. V. Artamonova, and V. M. Molev, “Optical glass with refractive index of 1.75 and high specific refraction for spectacle optics” Glass Ceram. 52, 143–146 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped Fiber Gratings for Optical Communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

J. Appl. Phys. (1)

J. Li and S. T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96, 6253–6258 (2004).
[Crossref]

J. Electrochem. Soc. (1)

K. Ohshika, H. Yanazawa, J. Kurodja, S. Kayama, and Y. Sasakiy, “Optimization of SiON film compositions for encapsulation of refractory metal gate GaAs metal-semiconductor field effect transistor,” J. Electrochem. Soc. 145, 323–328 (1998).
[Crossref]

J. Lightwave Technol. (1)

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[Crossref]

J. Phys. Rev. B (1)

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” J. Phys. Rev. B 59, 4546–4548 (1999).
[Crossref]

J. Phys. Rev. E (1)

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” J. Phys. Rev. E 59, 245104-2 (2001).

Opt. Commun. (1)

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic onedimensional photonic crystal,” Opt. Commun. 198, 273–279 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
[Crossref]

Phys. Rev. B (1)

E. Macia, “Exploiting quasiperiodic order in the design of optical devices,” Phys. Rev. B 63, 205421-8 (2001).
[Crossref]

Phys. Rev. Lett. (2)

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in Optics: Quasi-periodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD (1)

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, “Integrated interleaves technology enables high performance in DWDM systems,” in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410–1420, (2001).

Pure Appl. Opt. (1)

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7, 383–391 (1998).
[Crossref]

Other (3)

R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Proc. Optical Interference Coating (OSA), Banff, Canada, (2001).

H. Angus Macleod, Thin Film Optical Filter, 2nd edition, (McGraw-Hill Publishing Company, New York, 1989).

G. P. HarmonJ. P. Harmon and G. K. Noren, “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, eds., (American Chemical Society, 2001) pp. 1–23.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of a multilayer structure with M layers
Fig. 2.
Fig. 2. (a). Reflection spectrum from FC 4(30) with parameters: na =1.9, nb =1.6, da =1µm, db =2µm, L=53.2 mm, Δλ=0.13nm and FSR=1.3nm; (b). Central portion of the spectrum expanded over two stop bands.
Fig. 3.
Fig. 3. (a). Reflection spectrum from two cascaded FC 4(25) as a 32 channel DWDM filter, design parameters are: d a1=2.4µm, d a2=2.97µm, db =2.4µm, na =1.75, nb =1.6, Δλ≈0.11 nm (at -3 dB); (b). Central portion of the spectrum, expanded over two stop bands.
Fig. 4.
Fig. 4. (a). A sample reflection band of a FC 4(25) with parameters da =2.4 µm, db =2.4 µm, na =1.75, nb =1.6; (b) The group delay of the reflection band illustrated in (a); (c) The group velocity dispersion for the same sample band
Fig. 5.
Fig. 5. (a). Reflection spectrum from two cascaded FC 4(25) apodized by Eq. (9), the parameters are: d a1=2.4µm, d a2=2.97µm, db =2.4µm, n 0=1.3, Δna =0.45, Δnb =0.3, σ=0.3, h=1.5, Δλ≈0.1 nm; (b). Central portion of the spectrum., expanded over two stop bands.
Fig. 6.
Fig. 6. (a). Cross sectional view of the proposed waveguide structure, sandwiched between two layers of SiO2; (b) A 3-D view of the proposed waveguide structure, from the top. Layer B (blue) nb=1.6, and Layer A (pink) with na=1.75.

Tables (5)

Tables Icon

Table 1. Dependence of the various properties of a multiband filter FC 4(n) on the values of n, for na =1.9, nb =1.6, da =0.75µm, db =2µm.

Tables Icon

Table 2. Dependence of the various properties of a multiband filter FC 4(30) on the values of da , for na =1.9, nb =1.6, db =2µm.

Tables Icon

Table 3. Dependence of the various properties of a multiband filter FC 4(30) on the values of db , for na =1.9, nb =1.6, da =0.75µm.

Tables Icon

Table 4. Dependence of the various properties of a multiband filter FC 4(30) on the values of na , for nb =1.6, da =0.75µm, db =2µm, λc =1567.05 nm, L=53 mm and FSR=1.4 nm.

Tables Icon

Table 5. Dependence of the various properties of a multiband filter FC 4(30) on the values of na , for na =1.9, da =0.75µm, db =2µm, λc =1567.05 nm, L=53 mm and FSR=1.4 nm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

B B n 1 A
A B n 1 AB
{ F C 1 ( n ) = S 1 = B F C 2 ( n ) = S 2 = B n 1 A F C 3 ( n ) = S 3 = ( B n 1 A ) n B F C j ( n ) = S j = S j 1 n S j 2
F C 4 ( n ) = S 4 = S 3 n S 2 = [ ( B n 1 A ) n B ] n B n 1 A
= ( B B n 1 A ) ( B B n 1 A ) n B ( B B n 1 A ) ( B B n 1 A ) n B n B B n 1 A
ρ i = n i 1 n i n i 1 + n i , i = 1 , 2 , , M + 1
[ E i + E i ] = 1 T i [ e j k i l i ρ i e j k i l i ρ i e j k i l i e j k i l i ] [ E i + 1 + E i + 1 ] , i = M , M 1 , , 1
Γ i = ρ i + Γ i + 1 e 2 j k i l i 1 + ρ i Γ i + 1 e 2 j k i l i , i = M , M 1 , , 1 .
τ g = d φ d ω
D = d τ g d λ = 2 π c λ 2 d τ d ω = 2 π c λ 2 d 2 φ d ω 2
g ( z ) = h × exp [ ( z 0.5 L σ L ) 2 ]
n a , b ( z ) = n 0 + Δ n a , b × g ( z ) .

Metrics