Abstract

Abstract

10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hasnain, P.-C. Ku, and R. S. Tucker, "Slow-Light Optical Buffers: Capabilities and Fundamental Limitations," J. Lightwave Technol. 23, 4046 - 4066 (2005).
    [CrossRef]
  2. D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, I. Andonovic, "SLOB: A Switch with Large Optical Buffers for Packet Switching," J. Lightwave Technol. 16, 1725 - 1736 (1998).
    [CrossRef]
  3. W. De Zhong and R.S. Tucker, "A New Wavelength-Routed Photonic Packet Buffer combining Traveling Delay Lines with Delay-Line Loops," J. Lightwave Technol. 19, 1085 - 1092 (2001).
    [CrossRef]
  4. K. Takiguchi, M. Itoh and T. Shibata, "Optical-Signal-Processing Device Based on Waveguide-Type Variable Delay Lines and Optical Gates," J. Lightwave Tech. 24, 2593 - 2601 (2006).
    [CrossRef]
  5. C. M. Warnky, R. Mital, and B. L. Anderson, "Demonstration of a Quartic Cell, a Free-Space True-Time-Delay Device Based on the White Cell," J. Lightwave Technol. 24,3849 - 3855 (2006).
    [CrossRef]
  6. H. K. Y. Cheung, R. W. L. Fung, C. H. Kwok and K. K. Y. Wong, "All-Optical Packet Switching by Pulsed-Pump Wavelength Exchange in a Highly Nonlinear Dispersion-Shifted Fiber," Conference on Optical Fiber Communications, paper OTuB4 (2007).
  7. Y. Okawachi, J. E. Sharping, C. Xu, A. L. Gaeta, "Large Tunable Optical Delays via Self-Phase Modulation and Dispersion," Opt. Express 14, 12022-12027 (2006).
    [CrossRef] [PubMed]
  8. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Yan Wang, A. Willner, and A. Gaeta, "All-Optical, Wavelength and Bandwidth Preserving, Pulse Delay based on Parametric Wavelength Conversion and Dispersion," Opt. Express 13, 7872-7877 (2005).
    [CrossRef] [PubMed]
  9. J. Ren, N. Alic, E. Myslivets, R.E. Saperstein, C. J. McKinstrie, R. M. Jopson, A.H. Gnauck, P.A. Andrekson and S. Radic, "12.47 ns Continuously-Tunable Two-Pump Parametric Delay," European Conference on Optical Communication, paper Th4.4.3 (2006).
  10. Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
    [CrossRef]
  11. C. Langrock, S. Kumar, J.E. McGeehan, A.E. Willner, and M.M. Fejer, "All-Optical Signal Processing using ?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579 - 2592 (2006).
    [CrossRef]
  12. W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
    [CrossRef]
  13. I. Fazal, S. Kumar, P. Saghari, L. Christen, Y. Li, A.E. Willner, C. Langrock, R. Roussev and M.M. Fejer, "Data-Polarization-Insensitive Wavelength Conversion in a PPLN Waveguide by Cross-Polarization-Modulation of the Pump using an SOA," Optical Fiber Communications Conference, paper OThB4 (2006).
    [CrossRef]

2007 (1)

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

2006 (4)

2005 (2)

2001 (1)

1998 (1)

1995 (1)

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

Anderson, B. L.

Andonovic, I.

Cole, M.J.

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

Cornwell, W. D.

De Zhong, W.

Ellis, A.D.

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

Fejer, M.M.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J.E. McGeehan, A.E. Willner, and M.M. Fejer, "All-Optical Signal Processing using ?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579 - 2592 (2006).
[CrossRef]

Franzen, A.

Gaeta, A. L.

Gaeta, A.L.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

Gilfedder, T. H.

Gu, X.

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

Hasnain, C.

Hunter, D. K.

Itoh, M.

K. Takiguchi, M. Itoh and T. Shibata, "Optical-Signal-Processing Device Based on Waveguide-Type Variable Delay Lines and Optical Gates," J. Lightwave Tech. 24, 2593 - 2601 (2006).
[CrossRef]

Ku, P.-C.

Kumar, S.

Laming, R.I.

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

Langrock, C.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J.E. McGeehan, A.E. Willner, and M.M. Fejer, "All-Optical Signal Processing using ?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579 - 2592 (2006).
[CrossRef]

Loh, W.H.

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

McGeehan, J.E.

Mital, R.

Okawachi, Y.

Roussev, R.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

Sharping, J.

Sharping, J. E.

Sharping, J.E.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

Shibata, T.

K. Takiguchi, M. Itoh and T. Shibata, "Optical-Signal-Processing Device Based on Waveguide-Type Variable Delay Lines and Optical Gates," J. Lightwave Tech. 24, 2593 - 2601 (2006).
[CrossRef]

Takiguchi, K.

K. Takiguchi, M. Itoh and T. Shibata, "Optical-Signal-Processing Device Based on Waveguide-Type Variable Delay Lines and Optical Gates," J. Lightwave Tech. 24, 2593 - 2601 (2006).
[CrossRef]

Tucker, R. S.

Tucker, R.S.

van Howe, J.

Wang, Y.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

Warnky, C. M.

Widdowson, T.

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

Willner, A.E.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J.E. McGeehan, A.E. Willner, and M.M. Fejer, "All-Optical Signal Processing using ?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579 - 2592 (2006).
[CrossRef]

Xu, C.

Yan, L.-S.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

Yan Wang, C.

Yu, C.

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

Zervas, M.N.

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

Electron. Lett. (1)

W.H. Loh, R.I. Laming, X. Gu, M.N. Zervas, M.J. Cole, T. Widdowson, and A.D. Ellis, "10 cm Chirped Fibre Bragg Grating for Dispersion Compensation at 10 Gbit/s over 400 km of Non-Dispersion Shifted Fibre," Electron. Lett. 31, 2203 - 2204 (1995).
[CrossRef]

J. Lightwave Tech. (1)

K. Takiguchi, M. Itoh and T. Shibata, "Optical-Signal-Processing Device Based on Waveguide-Type Variable Delay Lines and Optical Gates," J. Lightwave Tech. 24, 2593 - 2601 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (2)

Photon. Tech. Lett. (1)

Y. Wang, C. Yu, L.-S. Yan, A.E. Willner, R. Roussev, C. Langrock, M.M. Fejer, J.E. Sharping, and A.L. Gaeta, "44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide with Two-Pump Configuration, DCF, and a Dispersion Compensator," Photon. Tech. Lett. 19, 861-863 (2007).
[CrossRef]

Other (3)

J. Ren, N. Alic, E. Myslivets, R.E. Saperstein, C. J. McKinstrie, R. M. Jopson, A.H. Gnauck, P.A. Andrekson and S. Radic, "12.47 ns Continuously-Tunable Two-Pump Parametric Delay," European Conference on Optical Communication, paper Th4.4.3 (2006).

H. K. Y. Cheung, R. W. L. Fung, C. H. Kwok and K. K. Y. Wong, "All-Optical Packet Switching by Pulsed-Pump Wavelength Exchange in a Highly Nonlinear Dispersion-Shifted Fiber," Conference on Optical Fiber Communications, paper OTuB4 (2007).

I. Fazal, S. Kumar, P. Saghari, L. Christen, Y. Li, A.E. Willner, C. Langrock, R. Roussev and M.M. Fejer, "Data-Polarization-Insensitive Wavelength Conversion in a PPLN Waveguide by Cross-Polarization-Modulation of the Pump using an SOA," Optical Fiber Communications Conference, paper OThB4 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Packet 3 (P3) passes through the delay module which consists of periodically-poled lithium-niobate (PPLN) λ-converters, a dispersion compensating fiber (DCF) and a chirped fiber Bragg grating (FBG).

Fig. 2.
Fig. 2.

In the two scenarios, λ1 is converted to different λc’s, resulting in different group velocities due to inter-channel dispersion. The undesired intra-channel dispersion is compensated by a FBG. (PPLN : periodically poled lithium niobate waveguide)

Fig. 3.
Fig. 3.

a). λ1 (input signal) and λpump-1 constitute the pumps for PPLN-1. By tuning λdummy-1, the output λc can be tuned.

Fig. 3.
Fig. 3.

b). Spectral arrangement of PPLN-2. λc and λpump-2 are pumps, while λ1 is the output.

Fig. 4.
Fig. 4.

Experimental setup: LD (laser diode), Mod (modulator), PPG (pulse pattern generator), PPLN (periodically-poled lithium-niobate), DCF (dispersion compensating fiber), FBG (fiber Bragg grating), PC (polarization controller), Circ (circulator), EDFA (erbium doped fiber amplifier) and Rx (receiver). Note that ovals are simple passive couplers.

Fig. 5.
Fig. 5.

Packet delay shown at 10 and 26.4 ns. Final output signal is 1546.4 nm.

Fig. 6.
Fig. 6.

Delay as a function of converted wavelength.

Fig. 7.
Fig. 7.

Packet streams λ2 (non-delayed) and λ1 (delayed by 26.4 ns) synchronized and multiplexed. MUX=multiplexer. Our multiplexer is a simple 3-dB passive coupler.

Fig. 8.
Fig. 8.

Measured bit error rate (BER) for back-to-back, delayed single packet stream and multiplexed data stream. Power penalty of 2.5 dB is observed.

Fig. 9.
Fig. 9.

(a) Output spectra of the two PPLNs when the switch is in the OFF position. (b) Output spectra when the 2x2 switch is turned ON.

Fig. 10.
Fig. 10.

Experimental setup for measuring the reconfiguration time of the delay scheme. The inset shows that the reconfiguration time is 276 ps, which is the time when one delayed signal vanishes (blue-colored) and the new delayed signal (pink-colored) appears. Ovals are passive couplers.

Metrics