Abstract

Phase-shifting in an achromatic configuration of moiré interferometry is explained. The rigorous diffraction theory defines the phase of diffracted beams in terms of the pitch and the relative position of a compensator grating. A numerical analysis proceeds to determine the total phase change between two diffracted beams that produce moiré fringes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials, Mechanical Engineering Series, (Springer-Verlag, NY, 1994, Student ed. 1997).
    [CrossRef]
  2. L. Salbut and K. Patorski, "Polarization phase shifting method for moiré interferometry and flatness testing," Appl. Opt. 29, 1471-1473 (1990).
    [CrossRef] [PubMed]
  3. M. Kujawinska, L. Salbut, and K. Patorski, "Three-channel phase stepped system for moiré interferometry," Appl. Opt. 30, 1633-1635 (1991).
    [CrossRef] [PubMed]
  4. B. Han, "Higher sensitivity moiré interferometry for micromechanics studies," Opt. Eng. 31, 1517-1526 (1992).
    [CrossRef]
  5. B. Han, "Interferometric methods with enhanced sensitivity by optical/digital fringe multiplication," Appl. Opt. 32, 4713-4718 (1993).
    [CrossRef] [PubMed]
  6. X. He, D. Zou, and S. Liu, "Phase-shifting analysis in moiré interferometry and its application in electronic packaging," Opt. Eng. 37, 1410-1419 (1998).
    [CrossRef]
  7. M. R. Miller, I. Mohammed, X. Dai, N. Jiang, and P. S. Ho, "Analysis of flip chip packages using high resolution moiré interferometry," in Proceedings of 49th Electronic Components and Technology Conference, (1999), pp. 979-986.
  8. H. Liu, A. N. Cartwright, and C. Basaran, "Sensitivity improvement in phase-shifted moiré interferometry using 1-D continuous wavelet transform image processing," Opt. Eng. 42, 2646-2652 (2003).
    [CrossRef]
  9. B. Han, D. Columbus, Z. Wu, and J. Lu, "Mechanical fringe shifting in moiré interferometry," Exp. Tech. 18, 1, 16-19 (1999).
    [CrossRef]
  10. D. Post, "Moiré interferometry in white light," Appl. Opt. 18, 4163-4167 (1979).
    [CrossRef] [PubMed]
  11. D. H. Mollenhauer, P. Ifju, and B. Han, "A compact, robust, and versatile moiré interferometer," Opt. Lasers Eng. 23, 29-40 (1995).
    [CrossRef]
  12. D. Maystre, "Rigorous vector theories of diffraction gratings," in Progress in optics Vol. XXI, E. Wolf, ed. (North-Holland, Amsterdam, 1989).
  13. B. Han and D. Post, "Immersion interferometer for microscopic moiré interferometry," Exp. Mech. 32, 38-41 (1992).
    [CrossRef]
  14. C.-W. Han, S. Cho, and B. Han, "Transmission microscopic moiré interferometry," in Proceedings of the SEM Annual Conference, (Charlotte, NC, June 2-4, 2003), No 194.

2003 (1)

H. Liu, A. N. Cartwright, and C. Basaran, "Sensitivity improvement in phase-shifted moiré interferometry using 1-D continuous wavelet transform image processing," Opt. Eng. 42, 2646-2652 (2003).
[CrossRef]

1999 (1)

B. Han, D. Columbus, Z. Wu, and J. Lu, "Mechanical fringe shifting in moiré interferometry," Exp. Tech. 18, 1, 16-19 (1999).
[CrossRef]

1998 (1)

X. He, D. Zou, and S. Liu, "Phase-shifting analysis in moiré interferometry and its application in electronic packaging," Opt. Eng. 37, 1410-1419 (1998).
[CrossRef]

1995 (1)

D. H. Mollenhauer, P. Ifju, and B. Han, "A compact, robust, and versatile moiré interferometer," Opt. Lasers Eng. 23, 29-40 (1995).
[CrossRef]

1993 (1)

1992 (2)

B. Han and D. Post, "Immersion interferometer for microscopic moiré interferometry," Exp. Mech. 32, 38-41 (1992).
[CrossRef]

B. Han, "Higher sensitivity moiré interferometry for micromechanics studies," Opt. Eng. 31, 1517-1526 (1992).
[CrossRef]

1991 (1)

1990 (1)

1979 (1)

Appl. Opt. (4)

Exp. Mech. (1)

B. Han and D. Post, "Immersion interferometer for microscopic moiré interferometry," Exp. Mech. 32, 38-41 (1992).
[CrossRef]

Exp. Tech. (1)

B. Han, D. Columbus, Z. Wu, and J. Lu, "Mechanical fringe shifting in moiré interferometry," Exp. Tech. 18, 1, 16-19 (1999).
[CrossRef]

Opt. Eng. (3)

B. Han, "Higher sensitivity moiré interferometry for micromechanics studies," Opt. Eng. 31, 1517-1526 (1992).
[CrossRef]

X. He, D. Zou, and S. Liu, "Phase-shifting analysis in moiré interferometry and its application in electronic packaging," Opt. Eng. 37, 1410-1419 (1998).
[CrossRef]

H. Liu, A. N. Cartwright, and C. Basaran, "Sensitivity improvement in phase-shifted moiré interferometry using 1-D continuous wavelet transform image processing," Opt. Eng. 42, 2646-2652 (2003).
[CrossRef]

Opt. Lasers Eng. (1)

D. H. Mollenhauer, P. Ifju, and B. Han, "A compact, robust, and versatile moiré interferometer," Opt. Lasers Eng. 23, 29-40 (1995).
[CrossRef]

Other (4)

D. Maystre, "Rigorous vector theories of diffraction gratings," in Progress in optics Vol. XXI, E. Wolf, ed. (North-Holland, Amsterdam, 1989).

C.-W. Han, S. Cho, and B. Han, "Transmission microscopic moiré interferometry," in Proceedings of the SEM Annual Conference, (Charlotte, NC, June 2-4, 2003), No 194.

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials, Mechanical Engineering Series, (Springer-Verlag, NY, 1994, Student ed. 1997).
[CrossRef]

M. R. Miller, I. Mohammed, X. Dai, N. Jiang, and P. S. Ho, "Analysis of flip chip packages using high resolution moiré interferometry," in Proceedings of 49th Electronic Components and Technology Conference, (1999), pp. 979-986.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of phase-shifting in moiré interferometry; (a) mechanical phase-shifting in a conventional configuration and (b) phase-shifting in an achromatic configuration

Fig. 2.
Fig. 2.

Compensator grating with a pitch of gc and a profile of f(x) is translated linearly to change the phase of diffracted beams.

Fig. 3.
Fig. 3.

Phase change as a function of linear translation of the compensator grating: (a) the first order and (b) the second order diffraction beams.

Fig. 4.
Fig. 4.

Geometrical relationship between the diffraction order and the wave front is shown for (a) the first and (b) the second order diffraction. The corresponding wave front movements caused by translation of the compensator grating are shown in (c) and (d).

Fig. 5.
Fig. 5.

Two diffracted beams in an achromatic system; the directions of phase shift are opposite.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

δ = 2 Δ sin α
E i = exp ( i 2 π λ ( x sin α z cos α ) )
2 E + k 2 E = 0
E ( x , z ) = n E n ( x , z ) = n B n Φ n ( x , y ) = n B n exp ( i 2 π λ ( x sin θ n + z cos θ n ) )
n B n Φ n ( x , f ( x ) ) + E i ( x , f ( x ) ) = 0
n = N + N B n ( N ) Φ n ( x , f ( x ) ) + E i ( x , f ( x ) ) = 0
f ( x ) = h 2 cos ( 2 π f c ( x Δ ) ) h 2
ϕ = 2 π n f c Δ
sin θ n = n λ f c
sin θ n = n λ + Λ Δ + 1 f c = n λ f c Λ = n λ f c Δ
ϕ 1 n = 2 π n f c Δ and ϕ 2 n = 2 π n f c Δ
I ( x , z ) = I 1 ( x , z ) + I 2 ( x , z ) + 2 I 1 ( x , z ) I 2 ( x , z ) cos ( 2 π · 2 m f g U ( x , z ) + ϕ 2 ϕ 1 )
= I 1 ( x , z ) + I 2 ( x , z ) + 2 I 1 ( x , z ) I 2 ( x , z ) cos 2 π ( 2 m f g U ( x , z ) + 2 n f c Δ )
Δ 2 π = 1 2 n f c

Metrics