Abstract

Room temperature quantum-well semiconductor optical amplifier with large input power is utilized in both the absorption and gain regime as an optical group delay and advance (slow and fast light), respectively. Material resonance created by coherent population oscillation and four wave mixing is tuned by electrical injection current, which in turn controls the speed of light. The four-wave mixing and population oscillation model explains the slow-to-fast light switching. Experimentally, the scheme achieves 200 degrees phase shift at 1 GHz, which corresponds to 0.56 delay-bandwidth product. The device presents a feasible building block of a multi-bit optical buffer system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
    [CrossRef]
  2. C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
    [CrossRef]
  3. S. E. Harris and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999).
    [CrossRef]
  4. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
    [CrossRef]
  5. S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow light based on coherent population oscillation in quantum dots at room temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
    [CrossRef]
  6. H. Su and S. L. Chuang, "Room temperature fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061,102 (2006).
    [CrossRef]
  7. H. Su and S. L. Chuang, "Room temperature slow light in quantum-dot devices," Opt. Lett. 31, 271-273 (2006).
    [CrossRef] [PubMed]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139,031-1139,034 (2003).
    [CrossRef]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Ultra-slow and superluminal light propagation in solids at room temperature," J. Cond. Matt. Phys. 16, 1321-1342 (2004).
    [CrossRef]
  11. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006).
    [CrossRef] [PubMed]
  12. P. K. Kondratko, H. Su, and S. L. Chuang, "Room temperature variable slow light using semiconductor quantum dots," CLEO/QELS/Phast CThW5 (2006).
  13. M. van der Poel, J. Mørk, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005).
    [CrossRef] [PubMed]
  14. F. Ohman, K. Yvind, and J. Mørk, "Voltage-controlled slow light in an integrated semiconductor structure with net gain," Opt. Express 14, 9955-9962 (2006).
    [CrossRef] [PubMed]
  15. F. Ohman, K. Yvind, and J. Mørk, "Slow light at high frequencies in an amplifying semiconductor waveguide," vol. CMN1 (CLEO/QELS/Phast, Long Beach Convention Center, California, 2006).
  16. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988).
    [CrossRef]
  18. T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wavemixing in a 1.5 μm traveling-wave semiconductor-laser amplifier," IEEE J. Quantum Electron. 26, 865-875 (1990).
    [CrossRef]
  19. G. Eisenstein, N. Tessler, U. Koren, J. M. Wiesenfeld, G. Raybon, and C. A. Burrus, "Length Dependence of the Saturation Characteristics in 1.5- μm Multiple Quantum Well Optical Amplifiers," IEEE Photon. Technol. Lett. 2, 790-791 (1990).
    [CrossRef]
  20. T. W. Berg, J. Mørk, and J. M. Hvam, "Gain dynamics and saturation in semiconductor quantum dot amplifiers," New J. Phys. 6, 178-201 (2004).
    [CrossRef]

2007 (1)

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow light based on coherent population oscillation in quantum dots at room temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

2006 (5)

2005 (2)

2004 (2)

T. W. Berg, J. Mørk, and J. M. Hvam, "Gain dynamics and saturation in semiconductor quantum dot amplifiers," New J. Phys. 6, 178-201 (2004).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Ultra-slow and superluminal light propagation in solids at room temperature," J. Cond. Matt. Phys. 16, 1321-1342 (2004).
[CrossRef]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

1999 (2)

S. E. Harris and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

1990 (2)

T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wavemixing in a 1.5 μm traveling-wave semiconductor-laser amplifier," IEEE J. Quantum Electron. 26, 865-875 (1990).
[CrossRef]

G. Eisenstein, N. Tessler, U. Koren, J. M. Wiesenfeld, G. Raybon, and C. A. Burrus, "Length Dependence of the Saturation Characteristics in 1.5- μm Multiple Quantum Well Optical Amplifiers," IEEE Photon. Technol. Lett. 2, 790-791 (1990).
[CrossRef]

1988 (1)

Appl. Phys. Lett. (1)

H. Su and S. L. Chuang, "Room temperature fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061,102 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow light based on coherent population oscillation in quantum dots at room temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wavemixing in a 1.5 μm traveling-wave semiconductor-laser amplifier," IEEE J. Quantum Electron. 26, 865-875 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Eisenstein, N. Tessler, U. Koren, J. M. Wiesenfeld, G. Raybon, and C. A. Burrus, "Length Dependence of the Saturation Characteristics in 1.5- μm Multiple Quantum Well Optical Amplifiers," IEEE Photon. Technol. Lett. 2, 790-791 (1990).
[CrossRef]

J. Cond. Matt. Phys. (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Ultra-slow and superluminal light propagation in solids at room temperature," J. Cond. Matt. Phys. 16, 1321-1342 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

New J. Phys. (1)

T. W. Berg, J. Mørk, and J. M. Hvam, "Gain dynamics and saturation in semiconductor quantum dot amplifiers," New J. Phys. 6, 178-201 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. E. Harris and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

Proc. IEEE (1)

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Other (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139,031-1139,034 (2003).
[CrossRef]

P. K. Kondratko, H. Su, and S. L. Chuang, "Room temperature variable slow light using semiconductor quantum dots," CLEO/QELS/Phast CThW5 (2006).

F. Ohman, K. Yvind, and J. Mørk, "Slow light at high frequencies in an amplifying semiconductor waveguide," vol. CMN1 (CLEO/QELS/Phast, Long Beach Convention Center, California, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The experimental setup of slow-to-fast light scheme by means of CPO and FWM in QW-SOA. The variable injection current of the SOA from absorption to gain region produces large delay tunability. ISO: optical isolator, SOA: semiconductor optical amplifier, VOA: variable optical attenuator. The power input to the variable SOA (because of the pre-amplifier) is on the order of or greater than saturation power of the current varied SOA.

Fig. 2.
Fig. 2.

Theoretical model of RF phase spectra for QW-SOA switching from absorption to gain. The zero modal gain (when the medium is purely intrinsic) is the switching point from slow-to-fast light. The large response under negative modal gain is attributed to large Pin/Psat , or very small saturation power of the QW-SOA under absorption.

Fig. 3.
Fig. 3.

Fixed frequency (1 GHz) RF phase variation versus linearly varying modal gain (bottom axis) and linear Pin/Psat (top axis). The figure inset shows modal gain behavior, and illustrates the absorption to gain (slow-to-fast light) switching of the QW-SOA.

Fig. 4.
Fig. 4.

(top) Probe RF gain at 1 GHz vs. current. (bottom) RF phase (left axis) and time delay (right axis) vs QW-SOA bias current for a 1 GHz modulated optical pump.

Fig. 5.
Fig. 5.

Time domain 1 GHz waveforms at different current bias into the QW-SOA. In time domain, the scheme achieves nearly half a cycle (171° or 0.475 ns variable delay). The absorption to gain switching of the SOA is responsible for very large delay-bandwidth tuning.

Metrics