Abstract

A non-rotationally symmetric encapsulation shape – which takes advantage of the low reflection coefficient for transverse magnetic polarized light near Brewster’s angle – designed to enhance extraction of a particular desired linear polarization from an unpolarized source is reported. The algorithm for optimization of the shape is described. Numerical ray-tracing simulations of the encapsulation shape are performed and predict an integrated enhancement of 8.3% in the ratio of desired polarization to undesired polarization when the refractive index of the encapsulant is 1.5. Experimental measurements of fabricated encapsulant shapes agree well with numerical predictions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S.-S. Lin, K. M. Yemelyanov, E. N. Pugh. Jr., and N. Engheta, "Separation and contrast enhancement of overlapping cast shadow components using polarization," Opt. Express 14, 7099-7108 (2006).
    [CrossRef] [PubMed]
  2. R. Oldenbourg, "A new view on polarization microscopy," Nature 381, 811-812 (1996).
    [CrossRef] [PubMed]
  3. J. B. Carruthers, "Wireless infrared communications," in Wiley Encyclopedia of Telecommunications, J. G. Proakis, ed., (Wiley, 2002).
  4. H. B. J. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, "Linearly polarized light-emitting backlight," J. Soc. Inf. Disp. 10, 107-112 (2002).
    [CrossRef]
  5. S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, and H. Greiner, "Towards a polarized light-emitting backlight: micro-structured anisotropic layers," J. Soc. Inf. Disp. 10, 209-213 (2002).
    [CrossRef]
  6. K.-W. Chien and H.-P. D. Shieh, "Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination," Appl. Opt. 43, 1830-1834 (2004).
    [CrossRef] [PubMed]
  7. K.-W. Chien, H.-P. D. Shieh, and H. J. Cornelissen, "Polarized backlight based on selective total internal reflection at microgrooves," Appl. Opt. 43, 4672-4676 (2004).
    [CrossRef] [PubMed]
  8. J. Shakya, K. Knabe, K. H. kim, J. Li, J. Y. Lin, and H. X. Jiang, "Polarization of III-nitride blue and ultraviolet light-emitting diodes," Appl. Phys. Lett. 86, 091107 (2005).
    [CrossRef]
  9. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, "Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates," Appl. Phys. Lett. 91, 051117 (2007).
    [CrossRef]

2007 (1)

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, "Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates," Appl. Phys. Lett. 91, 051117 (2007).
[CrossRef]

2006 (1)

2005 (1)

J. Shakya, K. Knabe, K. H. kim, J. Li, J. Y. Lin, and H. X. Jiang, "Polarization of III-nitride blue and ultraviolet light-emitting diodes," Appl. Phys. Lett. 86, 091107 (2005).
[CrossRef]

2004 (2)

2002 (2)

H. B. J. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, "Linearly polarized light-emitting backlight," J. Soc. Inf. Disp. 10, 107-112 (2002).
[CrossRef]

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, and H. Greiner, "Towards a polarized light-emitting backlight: micro-structured anisotropic layers," J. Soc. Inf. Disp. 10, 209-213 (2002).
[CrossRef]

1996 (1)

R. Oldenbourg, "A new view on polarization microscopy," Nature 381, 811-812 (1996).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Shakya, K. Knabe, K. H. kim, J. Li, J. Y. Lin, and H. X. Jiang, "Polarization of III-nitride blue and ultraviolet light-emitting diodes," Appl. Phys. Lett. 86, 091107 (2005).
[CrossRef]

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, "Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates," Appl. Phys. Lett. 91, 051117 (2007).
[CrossRef]

J. Soc. Inf. Disp. (2)

H. B. J. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, "Linearly polarized light-emitting backlight," J. Soc. Inf. Disp. 10, 107-112 (2002).
[CrossRef]

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, and H. Greiner, "Towards a polarized light-emitting backlight: micro-structured anisotropic layers," J. Soc. Inf. Disp. 10, 209-213 (2002).
[CrossRef]

Nature (1)

R. Oldenbourg, "A new view on polarization microscopy," Nature 381, 811-812 (1996).
[CrossRef] [PubMed]

Opt. Express (1)

Other (1)

J. B. Carruthers, "Wireless infrared communications," in Wiley Encyclopedia of Telecommunications, J. G. Proakis, ed., (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross section of encapsulation shape which enhances extraction of a light polarized in the xz-plane. The angle between the normal to the surface and the incident beam in all cases is Brewster’s angle.

Fig. 2.
Fig. 2.

Wireframe view of the polarization-enhancing encapsulation shape.

Fig. 3.
Fig. 3.

Photograph of a polarization-enhancing encapsulation shape

Fig. 4.
Fig. 4.

Depiction of setup used for measuring the polarization-enhancing encapsulant. The measurement arm rotates about the y-axis and remains in the xz-plane.

Fig. 5.
Fig. 5.

Intensity of x-polarized and y-polarized light as a function of the zenith angle ϕ.

Fig. 6.
Fig. 6.

Intensity ratio of x-polarized light to y-polarized light as a function of the zenith angle ϕ.

Metrics