Abstract

We report high-intensity nano-aperture Vertical-Cavity Surface-Emitting Lasers (VCSELs) with sub-100nm near-field spots using ridge apertures. Power transmission efficiency through different ridge apertures, including bowtie, C, H and I-shaped apertures on VCSELs were studied. Significantly higher transmission efficiencies were obtained from the ridge apertures than those from conventional square apertures. Mechanisms for high transmission through the ridge apertures are explained through simulation and waveguide theory. A new quadruple-ridge aperture is proposed and designed via simulation. With the high-intensity and small spot size, VCSELs using these ridge nano-apertures are very promising means to realize applications such as ultrahigh-density near-field optical data storage and ultrahigh-resolution near-field imaging etc.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
    [CrossRef]
  2. K. Sendur and W. Challener, "Near-field radiation of bowtie antennas and apertures at optical frequencies," J. Microsc.  210, 279-283 (2003).
    [CrossRef] [PubMed]
  3. E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
    [CrossRef]
  4. X. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
    [CrossRef] [PubMed]
  5. E. X. Jin and X. Xu, "Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film," Jpn. J. Appl. Phys.  43, 407 (2004).
    [CrossRef]
  6. K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons," J. Microsc. 210, 294 (2003).
    [CrossRef] [PubMed]
  7. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
    [CrossRef]
  8. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
    [CrossRef]
  9. E. X. Jin and X. Xu, "Obtaining subwavelength optical spots using nanscale ridge apertures," J. Heat Transfer 129, 37 (2007).
    [CrossRef]
  10. J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field probing of metal nanoaperture surface-emitting laser," Opt. Express 12, 6391-6396 (2004).
    [CrossRef] [PubMed]
  11. Y.-J. Kim, K. Suzuki and K. Goto, "Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage," Jpn. J. Appl. Phys. 40, 1783-1789 (2001).
    [CrossRef]
  12. S. Shinada, F. Koyama, N. Nishiyama, M. Arai, and K. Iga, "Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage," IEEE J. Sel. Top. Quantum Electron. 7, 365-369 (2001).
    [CrossRef]
  13. J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
    [CrossRef]
  14. J. Hashizume, P. B. Dayal, and F. Koyama, "Metal nano-aperture VCSEL for near-field optics and polarization control," Conference Digest, pp.101-102, IEEE 20th International Semiconductor Laser Conference (2006).
  15. J. Helszajn, Ridge waveguides and passive microwave components (The Institute of Electrical Engineers, London, 2000) p. 27.
  16. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957 (2004).
    [CrossRef]
  17. E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).
    [CrossRef]
  18. Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization," Appl. Phys. Lett. 90, 191110 (2007).
    [CrossRef]

2007

E. X. Jin and X. Xu, "Obtaining subwavelength optical spots using nanscale ridge apertures," J. Heat Transfer 129, 37 (2007).
[CrossRef]

Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization," Appl. Phys. Lett. 90, 191110 (2007).
[CrossRef]

2006

E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).
[CrossRef]

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

2005

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

2004

E. X. Jin and X. Xu, "Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film," Jpn. J. Appl. Phys.  43, 407 (2004).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957 (2004).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field probing of metal nanoaperture surface-emitting laser," Opt. Express 12, 6391-6396 (2004).
[CrossRef] [PubMed]

2003

K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons," J. Microsc. 210, 294 (2003).
[CrossRef] [PubMed]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

X. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
[CrossRef] [PubMed]

K. Sendur and W. Challener, "Near-field radiation of bowtie antennas and apertures at optical frequencies," J. Microsc.  210, 279-283 (2003).
[CrossRef] [PubMed]

2001

Y.-J. Kim, K. Suzuki and K. Goto, "Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage," Jpn. J. Appl. Phys. 40, 1783-1789 (2001).
[CrossRef]

S. Shinada, F. Koyama, N. Nishiyama, M. Arai, and K. Iga, "Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage," IEEE J. Sel. Top. Quantum Electron. 7, 365-369 (2001).
[CrossRef]

1944

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Appl. Phys. B

E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).
[CrossRef]

Appl. Phys. Lett.

Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization," Appl. Phys. Lett. 90, 191110 (2007).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Shinada, F. Koyama, N. Nishiyama, M. Arai, and K. Iga, "Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage," IEEE J. Sel. Top. Quantum Electron. 7, 365-369 (2001).
[CrossRef]

J. Heat Transfer

E. X. Jin and X. Xu, "Obtaining subwavelength optical spots using nanscale ridge apertures," J. Heat Transfer 129, 37 (2007).
[CrossRef]

J. Microsc.

K. Sendur and W. Challener, "Near-field radiation of bowtie antennas and apertures at optical frequencies," J. Microsc.  210, 279-283 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons," J. Microsc. 210, 294 (2003).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys

E. X. Jin and X. Xu, "Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film," Jpn. J. Appl. Phys.  43, 407 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

Y.-J. Kim, K. Suzuki and K. Goto, "Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage," Jpn. J. Appl. Phys. 40, 1783-1789 (2001).
[CrossRef]

Nano Lett.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Other

J. Hashizume, P. B. Dayal, and F. Koyama, "Metal nano-aperture VCSEL for near-field optics and polarization control," Conference Digest, pp.101-102, IEEE 20th International Semiconductor Laser Conference (2006).

J. Helszajn, Ridge waveguides and passive microwave components (The Institute of Electrical Engineers, London, 2000) p. 27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Nano-aperture VCSEL structure

Fig.2.
Fig.2.

2 distribution inside the top DBR pairs and SiO2 layer. The real part of the refractive index of each layer is also shown. The distance in x-axis starts from around the oxidation layer and goes up to the SiO2 layer.

Fig. 3.
Fig. 3.

Schematic structure of the ridge apertures. a) Bowtie aperture; b) C-aperture; c) H-aperture; d) I-aperture. The gray region is metal and the white region is air.

Fig. 4.
Fig. 4.

Near-field intensity distribution 20nm away; a) from the bowtie aperture; b) from the C-aperture; c) from the H-aperture; d) from the I-aperture. All the intensity patterns are normalized to incident intensity. The white lines are the outlines of these apertures.

Fig. 5.
Fig. 5.

Schematic structure of a double-ridge waveguide

Fig. 6.
Fig. 6.

Dependence of cutoff-wavelength of the double-ridge waveguide on gap distance.

Fig. 7.
Fig. 7.

Ex and Ez distribution at 5nm away from the bowtie-aperture. The incident light is polarized along X-direction. The field strength is normalized to incident field.

Fig. 8.
Fig. 8.

(a), (b) Ex and Ez distribution in XZ plane cut along center of two metals tips of the bowtie-aperture; (c), (d) Ex and Ez distribution in XZ plane cut along center of a 130nm square aperture. The Au film thickness for both the bowtie aperture and the square aperture is 150nm. The white lines in the figures show the outline of the Au film. Light is incident from top of the figures. The magnitudes of all field components here are normalized to the incident light.

Fig. 9.
Fig. 9.

Near-field E2 distribution at 20nm away from the bowtie-aperture. (a) The polarization is along X-direction; (b) the polarization is along Y-direction.

Fig. 10.
Fig. 10.

SEM image of the nano-slits and bowtie aperture

Fig. 11.
Fig. 11.

(a) Polarization-resolved power emitted through the substrate after opening slits; (b) Total far-field power from VCSELs using different ridge apertures and a square aperture.

Fig.12.
Fig.12.

(a), (b) Two different designs of quadruple-ridge aperture; (c), (d) Near-field intensity distribution 20nm away from aperture (a) and aperture (b) respectively. The intensity pattern is normalized to incident intensity. The incident light is polarized along x-direction.

Tables (1)

Tables Icon

Table 1. Comparison of nano-aperture VCSELs using bowtie-aperture, C-aperture, H-aperture, I-aperture and square aperture. a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cot ( π ( a s ) λ c ) + b d tan ( π s λ c ) + 2 ( b λ c ) ln ( cos 1 ( π d 2 b ) ) = 0

Metrics