Abstract

We report high-intensity nano-aperture Vertical-Cavity Surface-Emitting Lasers (VCSELs) with sub-100nm near-field spots using ridge apertures. Power transmission efficiency through different ridge apertures, including bowtie, C, H and I-shaped apertures on VCSELs were studied. Significantly higher transmission efficiencies were obtained from the ridge apertures than those from conventional square apertures. Mechanisms for high transmission through the ridge apertures are explained through simulation and waveguide theory. A new quadruple-ridge aperture is proposed and designed via simulation. With the high-intensity and small spot size, VCSELs using these ridge nano-apertures are very promising means to realize applications such as ultrahigh-density near-field optical data storage and ultrahigh-resolution near-field imaging etc.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163, 1944
    [CrossRef]
  2. K. Sendur and W. Challener, “Near-field radiation of bowtie antennas and apertures at optical frequencies,” J. Microsc.,  210, 279–283 (2003).
    [CrossRef] [PubMed]
  3. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.,  86, 111106 (2005).
    [CrossRef]
  4. Xiaolei Shi, Lambertus Hesselink, and Robert L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.,  28, 1320–1322 (2003).
    [CrossRef] [PubMed]
  5. E. X. Jin and X. Xu, “Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys., Part 1 43, 407 (2004).
    [CrossRef]
  6. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons,” J. Microsc.,  210, 294 (2003)
    [CrossRef] [PubMed]
  7. Eric X. Jin and Xianfan Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett.,  88, 153110 (2006).
    [CrossRef]
  8. Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
    [CrossRef]
  9. E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanscale ridge apertures,” J. Heat Transfer,  129, 37 (2007)
    [CrossRef]
  10. Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field probing of metal nanoaperture surface-emitting laser,” Opt. Express,  12, 6391–6396 (2004).
    [CrossRef] [PubMed]
  11. Young-Joo Kim, Kazuhiro SUZUKI, and Kenya GOTO, “Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage,” Jpn. J. Appl. Phys.,  40, 1783–1789 (2001).
    [CrossRef]
  12. Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
    [CrossRef]
  13. Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,” Appl. Phys. Lett.,  84, 3226–3228 (2004).
    [CrossRef]
  14. J. Hashizume, P. B. Dayal, and F. Koyama, “Metal nano-aperture VCSEL for near-field optics and polarization control,” Conference Digest pp.101–102, IEEE 20th International Semiconductor Laser Conference (2006).
  15. J. Helszajn, “Ridge waveguides and passive microwave components,” p.27 (The Institute of Electrical Engineers, London, 2000).
  16. David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
    [CrossRef]
  17. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B,  84, 3–9 (2006)
    [CrossRef]
  18. Zhilong Rao, Joseph A. Matteo, Lambertus Hesselink, and James S. Harris, “High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett.,  90, 191110 (2007).
    [CrossRef]

2007 (2)

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanscale ridge apertures,” J. Heat Transfer,  129, 37 (2007)
[CrossRef]

Zhilong Rao, Joseph A. Matteo, Lambertus Hesselink, and James S. Harris, “High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett.,  90, 191110 (2007).
[CrossRef]

2006 (2)

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B,  84, 3–9 (2006)
[CrossRef]

Eric X. Jin and Xianfan Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett.,  88, 153110 (2006).
[CrossRef]

2005 (1)

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.,  86, 111106 (2005).
[CrossRef]

2004 (4)

E. X. Jin and X. Xu, “Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys., Part 1 43, 407 (2004).
[CrossRef]

Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field probing of metal nanoaperture surface-emitting laser,” Opt. Express,  12, 6391–6396 (2004).
[CrossRef] [PubMed]

Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,” Appl. Phys. Lett.,  84, 3226–3228 (2004).
[CrossRef]

David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
[CrossRef]

2003 (4)

Xiaolei Shi, Lambertus Hesselink, and Robert L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.,  28, 1320–1322 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons,” J. Microsc.,  210, 294 (2003)
[CrossRef] [PubMed]

K. Sendur and W. Challener, “Near-field radiation of bowtie antennas and apertures at optical frequencies,” J. Microsc.,  210, 279–283 (2003).
[CrossRef] [PubMed]

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

2001 (2)

Young-Joo Kim, Kazuhiro SUZUKI, and Kenya GOTO, “Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage,” Jpn. J. Appl. Phys.,  40, 1783–1789 (2001).
[CrossRef]

Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163, 1944
[CrossRef]

Akhremitchev, B.B.

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

Arai, Masakazu

Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
[CrossRef]

Bain, J. A.

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163, 1944
[CrossRef]

Challener, W.

K. Sendur and W. Challener, “Near-field radiation of bowtie antennas and apertures at optical frequencies,” J. Microsc.,  210, 279–283 (2003).
[CrossRef] [PubMed]

Chen, Fang

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

Dayal, P. B.

J. Hashizume, P. B. Dayal, and F. Koyama, “Metal nano-aperture VCSEL for near-field optics and polarization control,” Conference Digest pp.101–102, IEEE 20th International Semiconductor Laser Conference (2006).

Fromm, David P.

David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
[CrossRef]

GOTO, Kenya

Young-Joo Kim, Kazuhiro SUZUKI, and Kenya GOTO, “Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage,” Jpn. J. Appl. Phys.,  40, 1783–1789 (2001).
[CrossRef]

Harris, James S.

Zhilong Rao, Joseph A. Matteo, Lambertus Hesselink, and James S. Harris, “High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett.,  90, 191110 (2007).
[CrossRef]

Hashizume, J.

J. Hashizume, P. B. Dayal, and F. Koyama, “Metal nano-aperture VCSEL for near-field optics and polarization control,” Conference Digest pp.101–102, IEEE 20th International Semiconductor Laser Conference (2006).

Hashizume, Jiro

Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,” Appl. Phys. Lett.,  84, 3226–3228 (2004).
[CrossRef]

Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field probing of metal nanoaperture surface-emitting laser,” Opt. Express,  12, 6391–6396 (2004).
[CrossRef] [PubMed]

Helszajn, J.

J. Helszajn, “Ridge waveguides and passive microwave components,” p.27 (The Institute of Electrical Engineers, London, 2000).

Hesselink, Lambertus

Zhilong Rao, Joseph A. Matteo, Lambertus Hesselink, and James S. Harris, “High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett.,  90, 191110 (2007).
[CrossRef]

Xiaolei Shi, Lambertus Hesselink, and Robert L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.,  28, 1320–1322 (2003).
[CrossRef] [PubMed]

Iga, Kenichi

Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
[CrossRef]

Itagi, A.

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

James Schuck, P.

David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanscale ridge apertures,” J. Heat Transfer,  129, 37 (2007)
[CrossRef]

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B,  84, 3–9 (2006)
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.,  86, 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys., Part 1 43, 407 (2004).
[CrossRef]

Jin, Eric X.

Eric X. Jin and Xianfan Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett.,  88, 153110 (2006).
[CrossRef]

Kim, Young-Joo

Young-Joo Kim, Kazuhiro SUZUKI, and Kenya GOTO, “Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage,” Jpn. J. Appl. Phys.,  40, 1783–1789 (2001).
[CrossRef]

Kino, Gordon

David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
[CrossRef]

Koyama, F.

J. Hashizume, P. B. Dayal, and F. Koyama, “Metal nano-aperture VCSEL for near-field optics and polarization control,” Conference Digest pp.101–102, IEEE 20th International Semiconductor Laser Conference (2006).

Koyama, Fumio

Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,” Appl. Phys. Lett.,  84, 3226–3228 (2004).
[CrossRef]

Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field probing of metal nanoaperture surface-emitting laser,” Opt. Express,  12, 6391–6396 (2004).
[CrossRef] [PubMed]

Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
[CrossRef]

Matteo, Joseph A.

Zhilong Rao, Joseph A. Matteo, Lambertus Hesselink, and James S. Harris, “High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett.,  90, 191110 (2007).
[CrossRef]

Moerner, W. E.

David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
[CrossRef]

Nishiyama, Nobuhiko

Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
[CrossRef]

Rao, Zhilong

Zhilong Rao, Joseph A. Matteo, Lambertus Hesselink, and James S. Harris, “High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett.,  90, 191110 (2007).
[CrossRef]

Schlesinger, T.E.

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

Sendur, K.

K. Sendur and W. Challener, “Near-field radiation of bowtie antennas and apertures at optical frequencies,” J. Microsc.,  210, 279–283 (2003).
[CrossRef] [PubMed]

Shi, Xiaolei

Shinada, Satoshi

Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
[CrossRef]

Stancil, D. D.

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

Stebounova, L.

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

Sundaramurthy, Arvind

David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
[CrossRef]

SUZUKI, Kazuhiro

Young-Joo Kim, Kazuhiro SUZUKI, and Kenya GOTO, “Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage,” Jpn. J. Appl. Phys.,  40, 1783–1789 (2001).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons,” J. Microsc.,  210, 294 (2003)
[CrossRef] [PubMed]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons,” J. Microsc.,  210, 294 (2003)
[CrossRef] [PubMed]

Thornton, Robert L.

Walker, G.C.

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanscale ridge apertures,” J. Heat Transfer,  129, 37 (2007)
[CrossRef]

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B,  84, 3–9 (2006)
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.,  86, 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys., Part 1 43, 407 (2004).
[CrossRef]

Xu, Xianfan

Eric X. Jin and Xianfan Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett.,  88, 153110 (2006).
[CrossRef]

Appl. Phys. B (1)

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B,  84, 3–9 (2006)
[CrossRef]

Appl. Phys. Lett. (5)

Zhilong Rao, Joseph A. Matteo, Lambertus Hesselink, and James S. Harris, “High-intensity C-shaped nano-aperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett.,  90, 191110 (2007).
[CrossRef]

Jiro Hashizume and Fumio Koyama, “Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,” Appl. Phys. Lett.,  84, 3226–3228 (2004).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.,  86, 111106 (2005).
[CrossRef]

Eric X. Jin and Xianfan Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett.,  88, 153110 (2006).
[CrossRef]

Fang Chen, A. Itagi, J. A. Bain, D. D. Stancil, T.E. Schlesinger, L. Stebounova, G.C. Walker, and B.B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett.,  83, 3245–3247 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Satoshi Shinada, Fumio Koyama, Nobuhiko Nishiyama, Masakazu Arai, and Kenichi Iga, “Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,” IEEE J. Sel. Top. Quantum Electron.,  7, 365–369 (2001).
[CrossRef]

J. Heat Transfer (1)

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanscale ridge apertures,” J. Heat Transfer,  129, 37 (2007)
[CrossRef]

J. Microsc. (2)

K. Sendur and W. Challener, “Near-field radiation of bowtie antennas and apertures at optical frequencies,” J. Microsc.,  210, 279–283 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polaritons,” J. Microsc.,  210, 294 (2003)
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

Young-Joo Kim, Kazuhiro SUZUKI, and Kenya GOTO, “Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage,” Jpn. J. Appl. Phys.,  40, 1783–1789 (2001).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

E. X. Jin and X. Xu, “Finite Difference Time Domain Simulation studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys., Part 1 43, 407 (2004).
[CrossRef]

Nano Lett. (1)

David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.,  4, 957 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163, 1944
[CrossRef]

Other (2)

J. Hashizume, P. B. Dayal, and F. Koyama, “Metal nano-aperture VCSEL for near-field optics and polarization control,” Conference Digest pp.101–102, IEEE 20th International Semiconductor Laser Conference (2006).

J. Helszajn, “Ridge waveguides and passive microwave components,” p.27 (The Institute of Electrical Engineers, London, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Nano-aperture VCSEL structure

Fig.2.
Fig.2.

2 distribution inside the top DBR pairs and SiO2 layer. The real part of the refractive index of each layer is also shown. The distance in x-axis starts from around the oxidation layer and goes up to the SiO2 layer.

Fig. 3.
Fig. 3.

Schematic structure of the ridge apertures. a) Bowtie aperture; b) C-aperture; c) H-aperture; d) I-aperture. The gray region is metal and the white region is air.

Fig. 4.
Fig. 4.

Near-field intensity distribution 20nm away; a) from the bowtie aperture; b) from the C-aperture; c) from the H-aperture; d) from the I-aperture. All the intensity patterns are normalized to incident intensity. The white lines are the outlines of these apertures.

Fig. 5.
Fig. 5.

Schematic structure of a double-ridge waveguide

Fig. 6.
Fig. 6.

Dependence of cutoff-wavelength of the double-ridge waveguide on gap distance.

Fig. 7.
Fig. 7.

Ex and Ez distribution at 5nm away from the bowtie-aperture. The incident light is polarized along X-direction. The field strength is normalized to incident field.

Fig. 8.
Fig. 8.

(a), (b) Ex and Ez distribution in XZ plane cut along center of two metals tips of the bowtie-aperture; (c), (d) Ex and Ez distribution in XZ plane cut along center of a 130nm square aperture. The Au film thickness for both the bowtie aperture and the square aperture is 150nm. The white lines in the figures show the outline of the Au film. Light is incident from top of the figures. The magnitudes of all field components here are normalized to the incident light.

Fig. 9.
Fig. 9.

Near-field E2 distribution at 20nm away from the bowtie-aperture. (a) The polarization is along X-direction; (b) the polarization is along Y-direction.

Fig. 10.
Fig. 10.

SEM image of the nano-slits and bowtie aperture

Fig. 11.
Fig. 11.

(a) Polarization-resolved power emitted through the substrate after opening slits; (b) Total far-field power from VCSELs using different ridge apertures and a square aperture.

Fig.12.
Fig.12.

(a), (b) Two different designs of quadruple-ridge aperture; (c), (d) Near-field intensity distribution 20nm away from aperture (a) and aperture (b) respectively. The intensity pattern is normalized to incident intensity. The incident light is polarized along x-direction.

Tables (1)

Tables Icon

Table 1. Comparison of nano-aperture VCSELs using bowtie-aperture, C-aperture, H-aperture, I-aperture and square aperture. a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cot ( π ( a s ) λ c ) + b d tan ( π s λ c ) + 2 ( b λ c ) ln ( cos 1 ( π d 2 b ) ) = 0

Metrics