C. W. Neff, L. M. Andersson, and M. Qiu, “Modelling electromagnetically induced transparency media using the finite-difference time-domain method,” New J. Phys. 9, 48 (2007).

[Crossref]

J. Tidström, P. Jönes, and L. M. Andersson, “Delay bandwidth product of electromagnetically induced transparency media,” Phys. Rev. A 75, 53803 (2007).

[Crossref]

M. Han, R. Dutton, and S. Fan, “Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs,” Microwave andWireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 16, 119–121 (2006).

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).

[Crossref]

M. Soljačić, E. Lidorikis, J. D. Hau, and Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).

[Crossref]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).

[Crossref]
[PubMed]

W.-H. Guo, W.-J. Li, and Y.-Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” Microwave and Wireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 11, 223–225 (2001).

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).

[Crossref]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystal,” Phys. Rev. Lett. 84, 2140–2143 (2000).

[Crossref]
[PubMed]

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).

[Crossref]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).

[Crossref]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997).

[Crossref]

M. Okoniewski, M. Mrozowski, and M. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Micro. Guided Wave Lett. 7, 121–123 (1997).

[Crossref]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).

[Crossref]

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[Crossref]
[PubMed]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]
[PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[Crossref]
[PubMed]

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).

[Crossref]

D. Marcuse, Theory of Dielectric Optical Waveguides,(Academic Press, New York, 1974).

C. W. Neff, L. M. Andersson, and M. Qiu, “Modelling electromagnetically induced transparency media using the finite-difference time-domain method,” New J. Phys. 9, 48 (2007).

[Crossref]

J. Tidström, P. Jönes, and L. M. Andersson, “Delay bandwidth product of electromagnetically induced transparency media,” Phys. Rev. A 75, 53803 (2007).

[Crossref]

G. A. Baker and J. L. Gammel, The Padé Approximant in Theoretical Physics, (Academic, New York, 1970).

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystal,” Phys. Rev. Lett. 84, 2140–2143 (2000).

[Crossref]
[PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).

[Crossref]

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).

[Crossref]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).

[Crossref]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]
[PubMed]

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[Crossref]
[PubMed]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997).

[Crossref]

M. Han, R. Dutton, and S. Fan, “Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs,” Microwave andWireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 16, 119–121 (2006).

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).

[Crossref]

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).

[Crossref]

M. Han, R. Dutton, and S. Fan, “Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs,” Microwave andWireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 16, 119–121 (2006).

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).

[Crossref]
[PubMed]

G. A. Baker and J. L. Gammel, The Padé Approximant in Theoretical Physics, (Academic, New York, 1970).

W.-H. Guo, W.-J. Li, and Y.-Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” Microwave and Wireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 11, 223–225 (2001).

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston, 2000).

M. Han, R. Dutton, and S. Fan, “Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs,” Microwave andWireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 16, 119–121 (2006).

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).

[Crossref]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]
[PubMed]

M. Soljačić, E. Lidorikis, J. D. Hau, and Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).

[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).

[Crossref]

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).

[Crossref]

W.-H. Guo, W.-J. Li, and Y.-Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” Microwave and Wireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 11, 223–225 (2001).

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]
[PubMed]

M. Soljačić, E. Lidorikis, J. D. Hau, and Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).

[Crossref]

J. Tidström, P. Jönes, and L. M. Andersson, “Delay bandwidth product of electromagnetically induced transparency media,” Phys. Rev. A 75, 53803 (2007).

[Crossref]

W.-H. Guo, W.-J. Li, and Y.-Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” Microwave and Wireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 11, 223–225 (2001).

M. Soljačić, E. Lidorikis, J. D. Hau, and Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).

[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).

[Crossref]

D. Marcuse, Theory of Dielectric Optical Waveguides,(Academic Press, New York, 1974).

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[Crossref]
[PubMed]

M. Okoniewski, M. Mrozowski, and M. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Micro. Guided Wave Lett. 7, 121–123 (1997).

[Crossref]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997).

[Crossref]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997).

[Crossref]

C. W. Neff, L. M. Andersson, and M. Qiu, “Modelling electromagnetically induced transparency media using the finite-difference time-domain method,” New J. Phys. 9, 48 (2007).

[Crossref]

M. Okoniewski, M. Mrozowski, and M. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Micro. Guided Wave Lett. 7, 121–123 (1997).

[Crossref]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystal,” Phys. Rev. Lett. 84, 2140–2143 (2000).

[Crossref]
[PubMed]

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[Crossref]
[PubMed]

C. W. Neff, L. M. Andersson, and M. Qiu, “Modelling electromagnetically induced transparency media using the finite-difference time-domain method,” New J. Phys. 9, 48 (2007).

[Crossref]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997).

[Crossref]

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[Crossref]
[PubMed]

M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).

[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997).

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[Crossref]
[PubMed]

M. Soljačić, E. Lidorikis, J. D. Hau, and Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).

[Crossref]

M. Okoniewski, M. Mrozowski, and M. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Micro. Guided Wave Lett. 7, 121–123 (1997).

[Crossref]

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston, 2000).

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystal,” Phys. Rev. Lett. 84, 2140–2143 (2000).

[Crossref]
[PubMed]

J. Tidström, P. Jönes, and L. M. Andersson, “Delay bandwidth product of electromagnetically induced transparency media,” Phys. Rev. A 75, 53803 (2007).

[Crossref]

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).

[Crossref]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997).

[Crossref]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[Crossref]
[PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).

[Crossref]
[PubMed]

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).

[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997).

M. Okoniewski, M. Mrozowski, and M. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Micro. Guided Wave Lett. 7, 121–123 (1997).

[Crossref]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).

[Crossref]

W.-H. Guo, W.-J. Li, and Y.-Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” Microwave and Wireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 11, 223–225 (2001).

M. Han, R. Dutton, and S. Fan, “Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs,” Microwave andWireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 16, 119–121 (2006).

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).

[Crossref]

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).

[Crossref]

C. W. Neff, L. M. Andersson, and M. Qiu, “Modelling electromagnetically induced transparency media using the finite-difference time-domain method,” New J. Phys. 9, 48 (2007).

[Crossref]

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).

[Crossref]

M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).

[Crossref]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).

[Crossref]

G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385–2389 (1997).

[Crossref]

J. Tidström, P. Jönes, and L. M. Andersson, “Delay bandwidth product of electromagnetically induced transparency media,” Phys. Rev. A 75, 53803 (2007).

[Crossref]

M. Soljačić, E. Lidorikis, J. D. Hau, and Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).

[Crossref]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[Crossref]
[PubMed]

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).

[Crossref]
[PubMed]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystal,” Phys. Rev. Lett. 84, 2140–2143 (2000).

[Crossref]
[PubMed]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]
[PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).

[Crossref]
[PubMed]

D. Marcuse, Theory of Dielectric Optical Waveguides,(Academic Press, New York, 1974).

G. A. Baker and J. L. Gammel, The Padé Approximant in Theoretical Physics, (Academic, New York, 1970).

manuscript in preparation

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997).

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston, 2000).