Abstract

Two reconfigurable optical add-drop multiplexers, operating in the second or third telecom window, as well as a 1×4×4 reconfigurable λ-router operating in the second telecom window, are demonstrated. The devices have a footprint less than 2 mm2 and are based on thermally tunable vertically coupled microring resonators fabricated in Si3N4/SiO2.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Koonen, "Fiber to the Home/Fiber to the Premises: What, Where, and When?," Proc. IEEE 94,911-934 (2006).
    [CrossRef]
  2. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokobun, "An Eight-Channel Add-Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid," IEEE Photon. Technol. Lett. 11, 691-693 (1999).
    [CrossRef]
  3. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable Optical Add-Drop Multiplexer Using Microring Resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005).
    [CrossRef]
  4. R. A. Soref, and B. E. Little, "Proposed N-Wavelength M-Fiber WDM Crossconnect Switch Using Active Microring Resonators," IEEE Photon. Technol. Lett. 10, 1121-1123 (1998).
    [CrossRef]
  5. B. E. Little, S. T. Chu, W. Pan, and Y. Kokobun, "Microring resonator arrays for VLSI photonics," IEEE Photon. Technol. Lett. 12, 323-325 (2000).
    [CrossRef]
  6. S. Suzuki, K. Shuto, and Y. Hibino, "Integrated -optic ring resonators with two stacked layers of silica waveguide on Si," IEEE Photon. Technol. Lett. 4,1256-1258 (1992).
    [CrossRef]
  7. D. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, "Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology," Appl. Phys. B 73, 603-708 (2001).
    [CrossRef]
  8. K. Worhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, "Silicon oxinitride - a versatile material for integrated optics applications," J. Electrochem. Soc. 149, F85-F91 (2002).
  9. F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, "Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device," Appl. Phys. Lett. 71, 747-749 (1997).
    [CrossRef]
  10. B. E. Little, S. T. Chu, A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightw. Technol. 15, 998-1005 (1997).
    [CrossRef]
  11. D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for gigabit filtering in access networks," IEEE Photon. Technol. Lett. 17, 336-338 (2005).
    [CrossRef]
  12. D. H. Geuzebroek, "Flexible Optical Network Components based on Densely Integrated Microring Resonators," PhD Thesis, University of Twente, ISBN 90-365-2258-7, 2005.
  13. E. J. Klein, "Densely Integrated Microring-Resonator Based Components for Fibe-To-The-Home Applications," PhD Thesis, University of Twente, ISBN 978-90-365-2495-7, 2007.
  14. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.- K. Chen, T. Conway, D. M. Gill, M. Grove, C.- Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White and C. W. Wong, "Electronic-photonic integrated circuits on the CMOS platform," Proc. SPIE 6125 (2007).
  15. C. K. Madsen, and J. H. Zhao, "Optical Filter Design and Analysis: A Signal Processing Approach," John Wiley & Sons (ISBN: 0-471-18373-3), May 1999.
  16. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
    [CrossRef]
  17. D. J. W. Klunder, C. G. H. Roeloffzen, and A. Driessen, "A Novel Polarization-Independent Wavelength-Division-Multiplexing Filter Based on Cylindrical Microresonators," IEEE J. Sel. Top. Quantum. Electron. 8, 1294-1299 (2002).
    [CrossRef]
  18. A. Driessen, D. H. Geuzebroek, E. J. Klein, R. Dekker, R. Stoffer, C. Bornholdt, "Propagation of short lightpulses in microring resonators: Ballistic transport versus interference in the frequency domain," Opt. Commun. 270, 217-224 (2007).
    [CrossRef]
  19. D. H. Geuzebroek E. J. Klein, H. Kelderman, C. Bornholdt, and A. Driessen, "40 Gbit/s Reconfigurable Optical Add-Drop Multiplexer based on Microring Resonators, in Proceedings of the European Conference on Optical Communications (ECOC), 983-986 (2005).

2007

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.- K. Chen, T. Conway, D. M. Gill, M. Grove, C.- Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White and C. W. Wong, "Electronic-photonic integrated circuits on the CMOS platform," Proc. SPIE 6125 (2007).

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

A. Driessen, D. H. Geuzebroek, E. J. Klein, R. Dekker, R. Stoffer, C. Bornholdt, "Propagation of short lightpulses in microring resonators: Ballistic transport versus interference in the frequency domain," Opt. Commun. 270, 217-224 (2007).
[CrossRef]

2006

T. Koonen, "Fiber to the Home/Fiber to the Premises: What, Where, and When?," Proc. IEEE 94,911-934 (2006).
[CrossRef]

2005

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable Optical Add-Drop Multiplexer Using Microring Resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005).
[CrossRef]

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for gigabit filtering in access networks," IEEE Photon. Technol. Lett. 17, 336-338 (2005).
[CrossRef]

2002

D. J. W. Klunder, C. G. H. Roeloffzen, and A. Driessen, "A Novel Polarization-Independent Wavelength-Division-Multiplexing Filter Based on Cylindrical Microresonators," IEEE J. Sel. Top. Quantum. Electron. 8, 1294-1299 (2002).
[CrossRef]

K. Worhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, "Silicon oxinitride - a versatile material for integrated optics applications," J. Electrochem. Soc. 149, F85-F91 (2002).

2001

D. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, "Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology," Appl. Phys. B 73, 603-708 (2001).
[CrossRef]

2000

B. E. Little, S. T. Chu, W. Pan, and Y. Kokobun, "Microring resonator arrays for VLSI photonics," IEEE Photon. Technol. Lett. 12, 323-325 (2000).
[CrossRef]

1999

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokobun, "An Eight-Channel Add-Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid," IEEE Photon. Technol. Lett. 11, 691-693 (1999).
[CrossRef]

1998

R. A. Soref, and B. E. Little, "Proposed N-Wavelength M-Fiber WDM Crossconnect Switch Using Active Microring Resonators," IEEE Photon. Technol. Lett. 10, 1121-1123 (1998).
[CrossRef]

1997

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, "Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device," Appl. Phys. Lett. 71, 747-749 (1997).
[CrossRef]

B. E. Little, S. T. Chu, A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightw. Technol. 15, 998-1005 (1997).
[CrossRef]

1992

S. Suzuki, K. Shuto, and Y. Hibino, "Integrated -optic ring resonators with two stacked layers of silica waveguide on Si," IEEE Photon. Technol. Lett. 4,1256-1258 (1992).
[CrossRef]

Appl. Phys. B

D. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, "Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology," Appl. Phys. B 73, 603-708 (2001).
[CrossRef]

Appl. Phys. Lett.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, "Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device," Appl. Phys. Lett. 71, 747-749 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

D. J. W. Klunder, C. G. H. Roeloffzen, and A. Driessen, "A Novel Polarization-Independent Wavelength-Division-Multiplexing Filter Based on Cylindrical Microresonators," IEEE J. Sel. Top. Quantum. Electron. 8, 1294-1299 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for gigabit filtering in access networks," IEEE Photon. Technol. Lett. 17, 336-338 (2005).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokobun, "An Eight-Channel Add-Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid," IEEE Photon. Technol. Lett. 11, 691-693 (1999).
[CrossRef]

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable Optical Add-Drop Multiplexer Using Microring Resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005).
[CrossRef]

R. A. Soref, and B. E. Little, "Proposed N-Wavelength M-Fiber WDM Crossconnect Switch Using Active Microring Resonators," IEEE Photon. Technol. Lett. 10, 1121-1123 (1998).
[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokobun, "Microring resonator arrays for VLSI photonics," IEEE Photon. Technol. Lett. 12, 323-325 (2000).
[CrossRef]

S. Suzuki, K. Shuto, and Y. Hibino, "Integrated -optic ring resonators with two stacked layers of silica waveguide on Si," IEEE Photon. Technol. Lett. 4,1256-1258 (1992).
[CrossRef]

J. Electrochem. Soc.

K. Worhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, "Silicon oxinitride - a versatile material for integrated optics applications," J. Electrochem. Soc. 149, F85-F91 (2002).

J. Lightw. Technol.

B. E. Little, S. T. Chu, A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightw. Technol. 15, 998-1005 (1997).
[CrossRef]

Nature Photonics

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Opt. Commun.

A. Driessen, D. H. Geuzebroek, E. J. Klein, R. Dekker, R. Stoffer, C. Bornholdt, "Propagation of short lightpulses in microring resonators: Ballistic transport versus interference in the frequency domain," Opt. Commun. 270, 217-224 (2007).
[CrossRef]

Proc. IEEE

T. Koonen, "Fiber to the Home/Fiber to the Premises: What, Where, and When?," Proc. IEEE 94,911-934 (2006).
[CrossRef]

Proc. SPIE

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.- K. Chen, T. Conway, D. M. Gill, M. Grove, C.- Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White and C. W. Wong, "Electronic-photonic integrated circuits on the CMOS platform," Proc. SPIE 6125 (2007).

Other

C. K. Madsen, and J. H. Zhao, "Optical Filter Design and Analysis: A Signal Processing Approach," John Wiley & Sons (ISBN: 0-471-18373-3), May 1999.

D. H. Geuzebroek, "Flexible Optical Network Components based on Densely Integrated Microring Resonators," PhD Thesis, University of Twente, ISBN 90-365-2258-7, 2005.

E. J. Klein, "Densely Integrated Microring-Resonator Based Components for Fibe-To-The-Home Applications," PhD Thesis, University of Twente, ISBN 978-90-365-2495-7, 2007.

D. H. Geuzebroek E. J. Klein, H. Kelderman, C. Bornholdt, and A. Driessen, "40 Gbit/s Reconfigurable Optical Add-Drop Multiplexer based on Microring Resonators, in Proceedings of the European Conference on Optical Communications (ECOC), 983-986 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Reference network architecture.

Fig. 2.
Fig. 2.

Schematic layout of an OADM (a) and a λ-router (b) based on microring resonators.

Fig. 3.
Fig. 3.

Top view and coupling region cross-section of the MR unit cell.

Fig. 4.
Fig. 4.

Mask designs of the rOADM (a) and the λ-Router (b). A complete rOADM chip measures 5 mm by 1.5 mm while the λ-Router is only slightly larger, measuring 5 mm by 1.8 mm.

Fig. 5.
Fig. 5.

SEM micrograph of the cross-section of a MR. In this instance no CMP was used on the TEOS separation layer, resulting in a lifting of the MR on top of the port waveguides.

Fig. 6.
Fig. 6.

A λ-router packaged in a box containing all controlling logic. The inset shows a closeup of the pigtailed router chip.

Fig. 7.
Fig. 7.

MR drop response for a number of MR offsets.

Fig. 8.
Fig. 8.

Photograph of a realized rOADM.

Fig. 9.
Fig. 9.

Drop responses of Drop1 to Drop4 for a broadband source connected to the “In” port.

Fig. 10.
Fig. 10.

BER measurement setup.

Fig. 11.
Fig. 11.

BER results and eye diagrams.

Fig. 12.
Fig. 12.

Measured 1550 nm rOADM responses showing the through response and two drop responses. For the Drop1 port response the heater of the corresponding MR was activated.

Fig. 13.
Fig. 13.

Realized 1×4×4 λ-router.

Fig. 14.
Fig. 14.

Switching of a single channel in the router.

Fig. 15.
Fig. 15.

Responses measured at the Drop1 port of the λ-router when 2 or 3 channels are dropped.

Metrics