Abstract

We report the first observation of birefringent in-phase supermode operation of a phase-locked multicore fiber laser. The in-phase mode operation of our 12-core rectangular-array microstructured fiber laser was confirmed by the near-field distribution, the far-field diffraction pattern, and the optical spectrum. The birefringence of the in-phase mode in propagation constant Δγ was measured as ~4×10-6 1/µm. The break of the polarization degeneracy indicates the possibility of single polarization operation of phase-locked multicore fiber lasers and amplifiers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. R. Scifres, R. D. Burnham, and W. Streifer, "Phase-locked semiconductor laser array," Appl. Phys. Lett. 32, 1015-1017 (1978).
    [CrossRef]
  2. M. Oka, H. Masuda, Y. Kaneda, and S. Kubota, "Laser-diode-pumped phase-locked Nd:YAG laser arrays," IEEE J. Quantum Electron. 28, 1142-1147 (1992).
    [CrossRef]
  3. D. G. Youmans, "Phase locking of adjacent channel leaky waveguide CO2 lasers," Appl. Phys. Lett. 44, 365-367 (1984).
    [CrossRef]
  4. J. Morel, A. Woodtli, and R. Dandliker, "Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating," Opt. Lett. 18, 1520-1522 (1993).
    [CrossRef] [PubMed]
  5. Y. Jeong, J. K. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  6. T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, N. Peyghambarian, "Generation of 6.6 W multimode and 4 W single mode output from 7 cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
    [CrossRef]
  7. T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. Moloney, and N. Peyghambarian, "Generation of watts-level single-longitudinal-mode output from cladding-pumped short fiber lasers," Opt. Lett. 30, 2748-2750 (2005).
    [CrossRef] [PubMed]
  8. X. Zhu and R. K. Jain, "10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser," Opt. Lett. 32, 26-28 (2007).
    [CrossRef]
  9. D. R. Scifres, "Multiple core fiber lasers and optical amplifiers," US Patent #5,566,196 (1996).
  10. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, "Phase locking in a multicore fiber laser by means of a Talbot resonator," Opt. Lett. 25, 1436-1438 (2000).
    [CrossRef]
  11. M. Wrage, P. Glas, and M. Leitner, "Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors," Opt. Lett. 26, 980-982 (2001).
    [CrossRef]
  12. M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, "Phase-locking of a multicore fiber laser by wave propagating through an annular waveguide," Opt. Commun. 205, 367-375 (2002).
    [CrossRef]
  13. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Peterson, "Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area," Opt. Lett. 30, 1668-1670 (2005).
    [CrossRef] [PubMed]
  14. P. K. Cheo, A. Liu, and G. G. King, "A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array," IEEE Photon. Technol. Lett. 13, 439-441 (2001).
    [CrossRef]
  15. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Phase locking and in-phase supermode selection in monolithic multicore fiber lasers," Opt. Lett. 31, 2577-2579 (2006).
    [CrossRef] [PubMed]
  16. R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alumni, "Phase-locked antiguided multiple-core ribbon fiber," IEEE Photon. Technol. Lett. 15, 670-672 (2003).
    [CrossRef]
  17. J. Yoo, J. R. Hayes, E. G. Paek, A. Scherer, and Y. Kwon, "Array mode analysis of two-dimensional phased arrays of vertical cavity surface emitting lasers," IEEE J. Quantum. Electron. 26, 1039-1051 (1990).
    [CrossRef]
  18. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  19. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  20. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  21. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
    [CrossRef]
  22. A. Mafi and J. V. Moloney, "Shaping modes in multicore photonic crystal fibers," IEEE Photon. Technol. Lett. 17, 348-350 (2005).
    [CrossRef]
  23. J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293- 295 (1984).
    [CrossRef]
  24. E. Kapon, J. Katz, and A. Yariv, "Supermode analysis of phase-locked arrays of semiconductor lasers," Opt. Lett. 10, 125-127 (1984).
    [CrossRef]

2007

2006

2005

2004

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, N. Peyghambarian, "Generation of 6.6 W multimode and 4 W single mode output from 7 cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
[CrossRef] [PubMed]

2003

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alumni, "Phase-locked antiguided multiple-core ribbon fiber," IEEE Photon. Technol. Lett. 15, 670-672 (2003).
[CrossRef]

2002

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, "Phase-locking of a multicore fiber laser by wave propagating through an annular waveguide," Opt. Commun. 205, 367-375 (2002).
[CrossRef]

2001

P. K. Cheo, A. Liu, and G. G. King, "A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array," IEEE Photon. Technol. Lett. 13, 439-441 (2001).
[CrossRef]

M. Wrage, P. Glas, and M. Leitner, "Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors," Opt. Lett. 26, 980-982 (2001).
[CrossRef]

2000

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

1996

1993

1992

M. Oka, H. Masuda, Y. Kaneda, and S. Kubota, "Laser-diode-pumped phase-locked Nd:YAG laser arrays," IEEE J. Quantum Electron. 28, 1142-1147 (1992).
[CrossRef]

1990

J. Yoo, J. R. Hayes, E. G. Paek, A. Scherer, and Y. Kwon, "Array mode analysis of two-dimensional phased arrays of vertical cavity surface emitting lasers," IEEE J. Quantum. Electron. 26, 1039-1051 (1990).
[CrossRef]

1984

D. G. Youmans, "Phase locking of adjacent channel leaky waveguide CO2 lasers," Appl. Phys. Lett. 44, 365-367 (1984).
[CrossRef]

E. Kapon, J. Katz, and A. Yariv, "Supermode analysis of phase-locked arrays of semiconductor lasers," Opt. Lett. 10, 125-127 (1984).
[CrossRef]

J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293- 295 (1984).
[CrossRef]

1978

D. R. Scifres, R. D. Burnham, and W. Streifer, "Phase-locked semiconductor laser array," Appl. Phys. Lett. 32, 1015-1017 (1978).
[CrossRef]

Appl. Phys. Lett.

D. R. Scifres, R. D. Burnham, and W. Streifer, "Phase-locked semiconductor laser array," Appl. Phys. Lett. 32, 1015-1017 (1978).
[CrossRef]

D. G. Youmans, "Phase locking of adjacent channel leaky waveguide CO2 lasers," Appl. Phys. Lett. 44, 365-367 (1984).
[CrossRef]

J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection laser arrays," Appl. Phys. Lett. 44, 293- 295 (1984).
[CrossRef]

IEEE J. Quantum Electron.

M. Oka, H. Masuda, Y. Kaneda, and S. Kubota, "Laser-diode-pumped phase-locked Nd:YAG laser arrays," IEEE J. Quantum Electron. 28, 1142-1147 (1992).
[CrossRef]

IEEE J. Quantum. Electron.

J. Yoo, J. R. Hayes, E. G. Paek, A. Scherer, and Y. Kwon, "Array mode analysis of two-dimensional phased arrays of vertical cavity surface emitting lasers," IEEE J. Quantum. Electron. 26, 1039-1051 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

P. K. Cheo, A. Liu, and G. G. King, "A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array," IEEE Photon. Technol. Lett. 13, 439-441 (2001).
[CrossRef]

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alumni, "Phase-locked antiguided multiple-core ribbon fiber," IEEE Photon. Technol. Lett. 15, 670-672 (2003).
[CrossRef]

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, N. Peyghambarian, "Generation of 6.6 W multimode and 4 W single mode output from 7 cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

A. Mafi and J. V. Moloney, "Shaping modes in multicore photonic crystal fibers," IEEE Photon. Technol. Lett. 17, 348-350 (2005).
[CrossRef]

Opt. Commun.

M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, "Phase-locking of a multicore fiber laser by wave propagating through an annular waveguide," Opt. Commun. 205, 367-375 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Peterson, "Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area," Opt. Lett. 30, 1668-1670 (2005).
[CrossRef] [PubMed]

T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. Moloney, and N. Peyghambarian, "Generation of watts-level single-longitudinal-mode output from cladding-pumped short fiber lasers," Opt. Lett. 30, 2748-2750 (2005).
[CrossRef] [PubMed]

L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Phase locking and in-phase supermode selection in monolithic multicore fiber lasers," Opt. Lett. 31, 2577-2579 (2006).
[CrossRef] [PubMed]

X. Zhu and R. K. Jain, "10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser," Opt. Lett. 32, 26-28 (2007).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

E. Kapon, J. Katz, and A. Yariv, "Supermode analysis of phase-locked arrays of semiconductor lasers," Opt. Lett. 10, 125-127 (1984).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

J. Morel, A. Woodtli, and R. Dandliker, "Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating," Opt. Lett. 18, 1520-1522 (1993).
[CrossRef] [PubMed]

M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, "Phase locking in a multicore fiber laser by means of a Talbot resonator," Opt. Lett. 25, 1436-1438 (2000).
[CrossRef]

M. Wrage, P. Glas, and M. Leitner, "Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors," Opt. Lett. 26, 980-982 (2001).
[CrossRef]

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other

D. R. Scifres, "Multiple core fiber lasers and optical amplifiers," US Patent #5,566,196 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Microscopic images of the output facet of a 12-core microstructured Er/Yb co-doped phosphate fiber laser when (a) without pumping, (b) spontaneous emission, and (c) stimulated emission.

Fig. 2.
Fig. 2.

Far-field intensity distribution of a free-running 12-core microstructured Er/Yb co-doped phosphate fiber laser. (a) Pattern image, (b) 3-D description of (a).

Fig. 3.
Fig. 3.

Experimental setup for the phase-locked 12-core microstructured Er/Yb co-doped phosphate fiber laser.

Fig. 4.
Fig. 4.

Near-field distribution of the phase-locked 12-core microstructured Er/Yb co-doped phosphate fiber laser. (a) Profile along x direction, (b) near-field image, (c) profile along y direction.

Fig. 5.
Fig. 5.

Far-field intensity distribution of the phase-locked 12-core microstructured Er/Yb co-doped phosphate fiber laser. (a) Far-field pattern, (b) diffraction profile along x direction, (c) diffraction profile along y direction.

Fig. 6.
Fig. 6.

Optical spectra of free-running (dashed line) and in-phase operation (solid line) of the 12-core microstructured Er/Yb co-doped phosphate fiber laser.

Fig. 7.
Fig. 7.

RF spectrum of the LMB and PMB signals showing two non-degenerated, polarized in-phase supermodes emitted by the 12-core microstructured Er/Yb phosphate fiber laser.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 11 X , Y ( x , y , z ) = l = 1 3 m = 1 4 sin ( l π 4 ) sin ( m π 5 ) E 00 X , Y ( x x lm , y y lm ) e i γ 11 X , Y z ,
γ 11 X , Y = β X , Y + κ x X , Y cos ( π 4 ) + κ y X , Y cos ( π 5 ) ,
I 11 X , Y ( θ , ϕ ) = { sin [ 3 ( S x + π 4 ) 2 ] sin [ ( S x + π 4 ) 2 ] + sin [ 3 ( S x π 4 ) 2 ] sin [ ( S x π 4 ) 2 ] } 2 ,
× { sin [ 4 ( S y + π 5 ) 2 ] sin [ ( S y + π 5 ) 2 ] + sin [ 4 ( S y π 5 ) 2 ] sin [ ( S y π 5 ) 2 ] } 2 I 00 X , Y ( θ , ϕ )

Metrics