Abstract

Surface plasmon scattering spectra of chemically produced single Cu nanowires were obtained using a total internal reflection microscope. In particular, we have observed a strong surface plasmon peak in the far red and a red-shift of the surface plasmon resonance with increasing nanowire diameter. We believe that the most reasonable origin for the red-shift of comparably large diameter nanowires is the phase retardation effect.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 2.
  3. S.-K. Eah, H. M. Jaeger, N. F. Schererb, G. P. Wiederrecht, and X.-M. Linc, "Plasmon scattering from a single gold nanoparticle collected through an optical fiber," Appl. Phys. Lett. 86, 31902 (2005).
    [CrossRef]
  4. J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite plasmon resonant nanowires," Nano Lett. 2, 465-469 (2002).
    [CrossRef]
  5. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-7-475.
    [CrossRef] [PubMed]
  6. M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P.-M. Adam, and P. Royer, "Polarization-sensitive printing of surface plasmon interferences," Opt. Express 15, 4238-4246 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-7-4238.
    [CrossRef] [PubMed]
  7. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
    [CrossRef] [PubMed]
  8. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80, 4249-4252 (1998).
    [CrossRef]
  9. M. Barbic, J. J. Mock, D. R. Smith, and S. Schultz, "Single crystal silver nanowires prepared by the metal amplification method," J. Appl. Phys. 91, 9341-9345 (2002).
    [CrossRef]
  10. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
    [CrossRef]
  11. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, "Relative contributions to the plasmon line shape of metal nanoshells," Phys. Rev. B 66, 155431 (2002).
    [CrossRef]
  12. H. Wang, F. Tam, N. K. Grady, and N. J. Halas, "Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance," J. Phys. Chem. B 109, 18218-18222 (2005).
    [CrossRef]
  13. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography," Nano Lett. 7, 1947-1952 (2007).
    [CrossRef]
  14. Y. Chang, M. L. Lye, and H. C. Zeng, "Large-scale synthesis of high-quality ultralong copper nanowires," Langmuir 21, 3746-3748 (2005).
    [CrossRef] [PubMed]
  15. D. J. Horntrop, "Mesoscopic simulation of Ostwald ripening," J. Comp. Phys. 218, 429-441 (2006).
    [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  17. D. W. Lynch and W. R. Hunter, "Metals," in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).

2007 (2)

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography," Nano Lett. 7, 1947-1952 (2007).
[CrossRef]

M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P.-M. Adam, and P. Royer, "Polarization-sensitive printing of surface plasmon interferences," Opt. Express 15, 4238-4246 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-7-4238.
[CrossRef] [PubMed]

2006 (1)

D. J. Horntrop, "Mesoscopic simulation of Ostwald ripening," J. Comp. Phys. 218, 429-441 (2006).
[CrossRef]

2005 (3)

Y. Chang, M. L. Lye, and H. C. Zeng, "Large-scale synthesis of high-quality ultralong copper nanowires," Langmuir 21, 3746-3748 (2005).
[CrossRef] [PubMed]

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, "Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance," J. Phys. Chem. B 109, 18218-18222 (2005).
[CrossRef]

S.-K. Eah, H. M. Jaeger, N. F. Schererb, G. P. Wiederrecht, and X.-M. Linc, "Plasmon scattering from a single gold nanoparticle collected through an optical fiber," Appl. Phys. Lett. 86, 31902 (2005).
[CrossRef]

2003 (1)

L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (4)

M. Barbic, J. J. Mock, D. R. Smith, and S. Schultz, "Single crystal silver nanowires prepared by the metal amplification method," J. Appl. Phys. 91, 9341-9345 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, "Relative contributions to the plasmon line shape of metal nanoshells," Phys. Rev. B 66, 155431 (2002).
[CrossRef]

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite plasmon resonant nanowires," Nano Lett. 2, 465-469 (2002).
[CrossRef]

2000 (1)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80, 4249-4252 (1998).
[CrossRef]

1997 (1)

Appl. Phys. Lett. (1)

S.-K. Eah, H. M. Jaeger, N. F. Schererb, G. P. Wiederrecht, and X.-M. Linc, "Plasmon scattering from a single gold nanoparticle collected through an optical fiber," Appl. Phys. Lett. 86, 31902 (2005).
[CrossRef]

J. Appl. Phys. (1)

M. Barbic, J. J. Mock, D. R. Smith, and S. Schultz, "Single crystal silver nanowires prepared by the metal amplification method," J. Appl. Phys. 91, 9341-9345 (2002).
[CrossRef]

J. Comp. Phys. (1)

D. J. Horntrop, "Mesoscopic simulation of Ostwald ripening," J. Comp. Phys. 218, 429-441 (2006).
[CrossRef]

J. Phys. Chem. B (1)

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, "Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance," J. Phys. Chem. B 109, 18218-18222 (2005).
[CrossRef]

Langmuir (1)

Y. Chang, M. L. Lye, and H. C. Zeng, "Large-scale synthesis of high-quality ultralong copper nanowires," Langmuir 21, 3746-3748 (2005).
[CrossRef] [PubMed]

Nano Lett. (2)

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography," Nano Lett. 7, 1947-1952 (2007).
[CrossRef]

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite plasmon resonant nanowires," Nano Lett. 2, 465-469 (2002).
[CrossRef]

Nature (1)

L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, "Relative contributions to the plasmon line shape of metal nanoshells," Phys. Rev. B 66, 155431 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80, 4249-4252 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 2.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

D. W. Lynch and W. R. Hunter, "Metals," in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image of Cu nanowires. (b) TEM image of a Cu nanowire. Scale bar: 5nm. (c) High resolution TEM image of the same Cu nanowire. Box indicator shows 10 layers of (111) direction (2.08nm/10 lines). Growth direction is (011).

Fig. 2.
Fig. 2.

Experimental setup for total internal reflection microscopy. TH: tungsten-halogen lamp, P: prism, OL: objective lens, LP: linear polarizer, A: circular variable aperture, M: monochromator, I: ICCD.

Fig. 3.
Fig. 3.

CCD images of a Cu nanowire under white light illumination for polarization (a) perpendicular, or (b) parallel to the nanowire long axis. Arrows indicate incident E-field polarization. Scale bar: 5 µm. Inset: a typical SEM image of a Cu nanowire.

Fig. 4.
Fig. 4.

(a) Surface plasmon scattering spectra of a Cu nanowire with different polarization states. (b) Polar plot shows the angular variation of the peak.

Fig. 5.
Fig. 5.

Surface plasmon scattering spectra of a set of Cu nanowires having different diameters. Inset plots the peak energy position as a function of the diameter of Cu nanowires.

Fig. 6.
Fig. 6.

Calculated surface plasmon scattering spectra of Cu nanowires and nanospheres: nanowires by (a) full Mie scattering, (b) first order component only, and (c) nanospheres by full Mie scattering. For clarity, all the calculated spectra were normalized by their peak values.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p i = 4 π 3 abc ε m ε ( ω ) ε m ε m + [ ε ( ω ) ε m ] L i E i
Q sca = 2 x [ a 0 2 + 2 n = 1 ( a n 2 + b n 2 ) ]
a n = mJ n ( mx ) J n ( x ) J n ( x ) J n ( mx ) mJ n ( mx ) H n ( 1 ) ( x ) J n ( mx ) H n ( 1 ) ( x ) , b n = 0 for all n .

Metrics