Abstract

We experimentally demonstrate wideband dispersion-free slow light in chirped photonic crystal coupled waveguides (PCCW). In unchirped PCCWs, the zero group velocity can occur at an inflection point of a photonic band of even symmetric mode. The even symmetric mode is selectively excited by connecting the device with input and output waveguides through optimized branch and confluence structures. In the device fabricated on SOI substrate, a large increase in group delay was observed with a maximum group index of 140 and the zero group velocity dispersion at the inflection point. Photonic bands estimated from the group delay characteristics corresponded to calculated ones. In the chirped PCCWs, the group velocity dispersion was internally compensated and the nearly constant group index of 50–60 was obtained in a wavelength bandwidth of 10 nm. The dispersion compensation was also confirmed through the transmission measurement of sub-ps optical pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Baba, N. Fukaya, and J. Yonekura, "Observation of light transmission in photonic crystal waveguides with bends," Electron. Lett. 35, 654-655 (1999).
    [CrossRef]
  2. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe and A. Sakai, "Light propagation characteristics of straight single line defect optical waveguides in a photonic crystal slab fabricated into a silicon-on-insulator substrate," Japan.Quantum. Electron. 38, 743-752 (2002).
    [CrossRef]
  3. S. J. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).
    [CrossRef] [PubMed]
  4. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, "Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length," Opt. Express 12, 1090-1096 (2004).
    [CrossRef] [PubMed]
  5. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs" Phys. Rev. B 72, 161318 (2005).
    [CrossRef]
  6. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  7. K. Inoue, N. Kawai, Y. Sugimoto, N. Carlsson, N. Ikeda, and K. Asakawa, "Observation of small group velocity in two-dimensional AlGaAs-based potonic crystal slabs" Phys. Rev. B 65, 121308 (2002).
    [CrossRef]
  8. T. Asano, K. Kiyota, D. Kumamoto, B-S. Song, and S. Noda, "Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide," Appl. Phys. Lett. 84, 4690-4692 (2004).
    [CrossRef]
  9. Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
    [CrossRef] [PubMed]
  10. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  11. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
    [CrossRef]
  12. D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
    [CrossRef]
  13. T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007).
    [CrossRef]
  14. A. Sakai, I. Kato, D. Mori and T. Baba, "Anomalous low group velocity and low dispersion in simple photonic crystal line defect waveguides," IEEE/LEOS Annual Meet., ThQ5 (2004).
  15. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl.Phys. Lett. 85, 4866-4868 (2004).
    [CrossRef]
  16. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
    [CrossRef] [PubMed]
  17. D. Mori, and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005).
    [CrossRef] [PubMed]
  18. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides, " Opt. Express 14, 1658-1672 (2006).
    [CrossRef] [PubMed]
  19. C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, "Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of light," Phys. Rev. E73, 016619 (2006).
    [CrossRef]
  20. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006).
    [CrossRef] [PubMed]
  21. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-226 (2007).
    [CrossRef] [PubMed]
  22. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007).
    [CrossRef] [PubMed]
  23. D. Mori, S. Kubo, H. Sasaki, and T. Baba, "Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler," Opt. Express 15, 5264-5270 (2007).
    [CrossRef] [PubMed]
  24. S. Kubo, D. Mori and T. Baba, "Demonstration of low-group-velocity and Low-dispersion photonic crystal waveguide," IEEE/LEOS Int. Conf. Group IV Photon., WP35 (2007).
  25. Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa and K. Asakawa, "Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by sing topology optimization," Opt. Express 14, 9502-9507 (2006).
    [CrossRef] [PubMed]

2007 (4)

2006 (5)

2005 (5)

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs" Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
[CrossRef] [PubMed]

D. Mori, and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005).
[CrossRef] [PubMed]

2004 (4)

Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, "Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length," Opt. Express 12, 1090-1096 (2004).
[CrossRef] [PubMed]

A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl.Phys. Lett. 85, 4866-4868 (2004).
[CrossRef]

T. Asano, K. Kiyota, D. Kumamoto, B-S. Song, and S. Noda, "Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide," Appl. Phys. Lett. 84, 4690-4692 (2004).
[CrossRef]

D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
[CrossRef]

2003 (1)

2002 (2)

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe and A. Sakai, "Light propagation characteristics of straight single line defect optical waveguides in a photonic crystal slab fabricated into a silicon-on-insulator substrate," Japan.Quantum. Electron. 38, 743-752 (2002).
[CrossRef]

K. Inoue, N. Kawai, Y. Sugimoto, N. Carlsson, N. Ikeda, and K. Asakawa, "Observation of small group velocity in two-dimensional AlGaAs-based potonic crystal slabs" Phys. Rev. B 65, 121308 (2002).
[CrossRef]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1999 (1)

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light transmission in photonic crystal waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

T. Asano, K. Kiyota, D. Kumamoto, B-S. Song, and S. Noda, "Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide," Appl. Phys. Lett. 84, 4690-4692 (2004).
[CrossRef]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
[CrossRef]

Appl.Phys. Lett. (1)

A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl.Phys. Lett. 85, 4866-4868 (2004).
[CrossRef]

Electron. Lett. (1)

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light transmission in photonic crystal waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007).
[CrossRef]

Nature (1)

Yu. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69, (2005).
[CrossRef] [PubMed]

Opt. Express (10)

S. J. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, "Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length," Opt. Express 12, 1090-1096 (2004).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
[CrossRef] [PubMed]

D. Mori, and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005).
[CrossRef] [PubMed]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides, " Opt. Express 14, 1658-1672 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006).
[CrossRef] [PubMed]

Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa and K. Asakawa, "Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by sing topology optimization," Opt. Express 14, 9502-9507 (2006).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-226 (2007).
[CrossRef] [PubMed]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007).
[CrossRef] [PubMed]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, "Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler," Opt. Express 15, 5264-5270 (2007).
[CrossRef] [PubMed]

Phys. Rev. (1)

C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, "Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of light," Phys. Rev. E73, 016619 (2006).
[CrossRef]

Phys. Rev. B (2)

K. Inoue, N. Kawai, Y. Sugimoto, N. Carlsson, N. Ikeda, and K. Asakawa, "Observation of small group velocity in two-dimensional AlGaAs-based potonic crystal slabs" Phys. Rev. B 65, 121308 (2002).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs" Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Quantum. Electron. (1)

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe and A. Sakai, "Light propagation characteristics of straight single line defect optical waveguides in a photonic crystal slab fabricated into a silicon-on-insulator substrate," Japan.Quantum. Electron. 38, 743-752 (2002).
[CrossRef]

Other (2)

S. Kubo, D. Mori and T. Baba, "Demonstration of low-group-velocity and Low-dispersion photonic crystal waveguide," IEEE/LEOS Int. Conf. Group IV Photon., WP35 (2007).

A. Sakai, I. Kato, D. Mori and T. Baba, "Anomalous low group velocity and low dispersion in simple photonic crystal line defect waveguides," IEEE/LEOS Annual Meet., ThQ5 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron microscope image of fabricated device.

Fig. 2.
Fig. 2.

Photonic band of a PCCW for the TE-like polarization. (a) Calculated band for 2r2 =0.36 µm. Arrows indicate normalized frequencies used for optimizing the branch and confluence. (b) A schematic showing the band shift in a chirped structure.

Fig. 3.
Fig. 3.

Calculation results for the reflectance R and transmittance T for three types of branches and confluences.

Fig. 4.
Fig. 4.

Light propagation (Hz 2 distribution) simulated for structure III in Fig. 3 by 3D FDTD method. White cross on the left side represents the excitation point.

Fig. 5.
Fig. 5.

Transmission spectrum, group index and group delay, and photonic band of unchirped PCCWs. Red and black data points of the photonic band denote experimentally and theoretically determined values, respectively. The solid line and dashed line indicate the even mode and the odd mode, respectively.

Fig. 6.
Fig. 6.

GVD characteristics. (a) Sampled plots enveloping the group index and delay time characteristics for 2r2 =0.361 µm in Fig. 5. (b) GVD evaluated from (a).

Fig. 7.
Fig. 7.

Measured transmission characteristics in chirped PCCWs. Transmission spectra, group index and group delay for (a) 2r 2=0.345 µm and (b) 2r 2=0.367 µm. (c) Autocorrelation traces of transmitted optical pulse. A, B and C correspond to wavelengths in (b).

Metrics