Abstract

We present the first technique for directly measuring (without assumptions) the spatio-temporal intensity and phase of a train of ultrashort pulses at and near a focus. Our method uses an experimentally simple and high-spectral resolution variant of spectral interferometry (SEA TADPOLE). To illustrate our technique, we measured the spatio-temporal electric field in and around the foci of several different types of lenses. To confirm our results, we also simulated these measurements by numerically propagating a pulse through each of the lenses used. From one set of measurements, we made a movie showing a focusing pulse with severe chromatic aberration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kempe and W. Rudolph, “Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses,” Opt. Lett. 18, 137–139 (1993).
    [CrossRef] [PubMed]
  2. M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993).
    [CrossRef] [PubMed]
  3. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989).
    [CrossRef] [PubMed]
  4. Ulrike Fuchs, Uwe D. Zeitner, and Andreas Tünnermann, “Ultra-short pulse propagation in complex optical systems,” Opt. Express 13, 9903–9908 (2005).
    [CrossRef]
  5. Dan Oron and Yaron Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13, 9903–9908 (2005).
    [CrossRef] [PubMed]
  6. Nirit Dudovich, Dan Oron, and Yaron Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef] [PubMed]
  7. M. Mueller, J. Squier, and G.J. Brakenhoff, “Measurement if femtosecond pulses in the focal point of a high-numerical-aperature lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
    [CrossRef]
  8. Franco Quercioli, Bruno Tiribilli, Massimo Vassalli, and Francesca Sbrana, “Autocorrelator designs for nonlinear optical microscopy,” Opt. Eng. 45, (2006).
    [CrossRef]
  9. Vadim V. Lozovoy, Igor Pastirk, and Marcos Dantus, “Multiphoton intrepulse interference. IV. Ultrashort pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
    [CrossRef] [PubMed]
  10. David N. Fittinghoff, Jeff A. Squier, C. P. J. Barty, John N. Sweetser, Rick Trebino, and Michiel Mueller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
    [CrossRef]
  11. Rebecca Chadwick, Erik Spahr, Jeff A. Squier, and Charles G. Durfee, “Fringe-free, background-free, collinear third-harmonic generation frequency-resolved optical gating measurements for multiphoton microscopy,” Opt. Lett. 31, 3366–3368 (2006).
    [CrossRef] [PubMed]
  12. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002).
    [CrossRef]
  13. David N. Fittinghoff, Andrew C. Millard, Jeffery A. Squier, and Michiel Mueller, “Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective,” IEEE J. Quantum Electron. 35, (1999).
    [CrossRef]
  14. W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, and M. Mueller, “Simultaneous visualizations of spatial and chromatic abberations by two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 31, 2927–2929 (2006).
    [CrossRef] [PubMed]
  15. Zs. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14, 862–864 (1989).
    [CrossRef] [PubMed]
  16. J. Jasapara and W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
    [CrossRef]
  17. Pamela Bowlan, Pable Gabolde, Aparna Schreenath, Kristen McGresham, and Rick Trebino, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892–11900 (2006).
    [CrossRef] [PubMed]
  18. Cl. Froehly, A. Lacourt, and J. Ch. Vienot, “Time Impulse Responce and time Frequency Responce of Optical Pupils,” Nouvelle Revue D’Optique 4, 183–196 (1973).
    [CrossRef]
  19. A.C Kovaecs, K. Osvay, and Zs Bor, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20, 788–791 (1995).
    [CrossRef]
  20. A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
    [CrossRef]
  21. J.P. Geindre, P. Audebert, S. Rebibo, and J.C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001).
    [CrossRef]
  22. D. Meshulach, D. Yelin, and Y. Silbergerg, “Real-Time Spatial-Spectral Interference Measurements of Ultrashort Optical Pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
    [CrossRef]
  23. Kazuhiko Misawa and Takayoshi Kobayashi, “Femtosecond Sangac interferometer for phase spectroscopy,” Opt. Lett. 20, (1995).
    [CrossRef] [PubMed]
  24. M.L.M Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, (2001).
    [CrossRef] [PubMed]
  25. M.L.M Balistreri, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19, 1169 (2001).
    [CrossRef]
  26. H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiement and theory,” Phys. Rev. E 68, 026604 (2003).
    [CrossRef]
  27. H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
    [CrossRef]
  28. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” J. Opt. Soc. Am. B 9, 1158–1165 (1992).
    [CrossRef]
  29. Max Born and Emil Wolf, Principles of Optics (Cambridge University Press, New York, 1999).
  30. “OSLO Optical Design Program,” (Lambda Research Corporation, 2004).
  31. John A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, Inc., New Jersey, 2004).

2006 (4)

2005 (3)

2004 (2)

H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
[CrossRef]

Vadim V. Lozovoy, Igor Pastirk, and Marcos Dantus, “Multiphoton intrepulse interference. IV. Ultrashort pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiement and theory,” Phys. Rev. E 68, 026604 (2003).
[CrossRef]

2002 (1)

Nirit Dudovich, Dan Oron, and Yaron Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

2001 (3)

1999 (2)

David N. Fittinghoff, Andrew C. Millard, Jeffery A. Squier, and Michiel Mueller, “Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective,” IEEE J. Quantum Electron. 35, (1999).
[CrossRef]

J. Jasapara and W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (3)

1993 (2)

1992 (1)

1989 (2)

1973 (1)

Cl. Froehly, A. Lacourt, and J. Ch. Vienot, “Time Impulse Responce and time Frequency Responce of Optical Pupils,” Nouvelle Revue D’Optique 4, 183–196 (1973).
[CrossRef]

Amir, W.

Audebert, P.

Balistreri, M.L.M

M.L.M Balistreri, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19, 1169 (2001).
[CrossRef]

M.L.M Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, (2001).
[CrossRef] [PubMed]

Barty, C. P. J.

Bor, Z.

A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989).
[CrossRef] [PubMed]

Bor, Zs

Bor, Zs.

Born, Max

Max Born and Emil Wolf, Principles of Optics (Cambridge University Press, New York, 1999).

Bowlan, Pamela

Brakenhoff, G.J.

Buck, John A.

John A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, Inc., New Jersey, 2004).

Chadwick, Rebecca

Dantus, Marcos

Dudovich, Nirit

Nirit Dudovich, Dan Oron, and Yaron Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Durfee, C. G.

Durfee, Charles G.

Fittinghoff, David N.

David N. Fittinghoff, Andrew C. Millard, Jeffery A. Squier, and Michiel Mueller, “Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective,” IEEE J. Quantum Electron. 35, (1999).
[CrossRef]

David N. Fittinghoff, Jeff A. Squier, C. P. J. Barty, John N. Sweetser, Rick Trebino, and Michiel Mueller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

Froehly, Cl.

Cl. Froehly, A. Lacourt, and J. Ch. Vienot, “Time Impulse Responce and time Frequency Responce of Optical Pupils,” Nouvelle Revue D’Optique 4, 183–196 (1973).
[CrossRef]

Fuchs, Ulrike

Gabolde, P.

Gabolde, Pable

Gauthier, J.C.

Geindre, J.P.

Gersen, H.

H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
[CrossRef]

H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiement and theory,” Phys. Rev. E 68, 026604 (2003).
[CrossRef]

M.L.M Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, (2001).
[CrossRef] [PubMed]

Gogolak, Z.

Gorbe, M.

A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Jasapara, J.

Kempe, M.

Klenbniczki, J.

A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Kobayashi, Takayoshi

Kazuhiko Misawa and Takayoshi Kobayashi, “Femtosecond Sangac interferometer for phase spectroscopy,” Opt. Lett. 20, (1995).
[CrossRef] [PubMed]

Korterik, J.P.

H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
[CrossRef]

H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiement and theory,” Phys. Rev. E 68, 026604 (2003).
[CrossRef]

M.L.M Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, (2001).
[CrossRef] [PubMed]

M.L.M Balistreri, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19, 1169 (2001).
[CrossRef]

Kovaecs, A.C

Kovaecs, A.P.

A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Kuipers, L.

H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
[CrossRef]

H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiement and theory,” Phys. Rev. E 68, 026604 (2003).
[CrossRef]

M.L.M Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, (2001).
[CrossRef] [PubMed]

M.L.M Balistreri, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19, 1169 (2001).
[CrossRef]

Kurdi, G.

A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Lacourt, A.

Cl. Froehly, A. Lacourt, and J. Ch. Vienot, “Time Impulse Responce and time Frequency Responce of Optical Pupils,” Nouvelle Revue D’Optique 4, 183–196 (1973).
[CrossRef]

Lozovoy, Vadim V.

McGresham, Kristen

Meshulach, D.

Millard, Andrew C.

David N. Fittinghoff, Andrew C. Millard, Jeffery A. Squier, and Michiel Mueller, “Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective,” IEEE J. Quantum Electron. 35, (1999).
[CrossRef]

Misawa, Kazuhiko

Kazuhiko Misawa and Takayoshi Kobayashi, “Femtosecond Sangac interferometer for phase spectroscopy,” Opt. Lett. 20, (1995).
[CrossRef] [PubMed]

Mueller, M.

Mueller, Michiel

David N. Fittinghoff, Andrew C. Millard, Jeffery A. Squier, and Michiel Mueller, “Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective,” IEEE J. Quantum Electron. 35, (1999).
[CrossRef]

David N. Fittinghoff, Jeff A. Squier, C. P. J. Barty, John N. Sweetser, Rick Trebino, and Michiel Mueller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

Oron, Dan

Dan Oron and Yaron Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13, 9903–9908 (2005).
[CrossRef] [PubMed]

Nirit Dudovich, Dan Oron, and Yaron Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Osvay, K.

A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

A.C Kovaecs, K. Osvay, and Zs Bor, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20, 788–791 (1995).
[CrossRef]

Pastirk, Igor

Planchon, T. A.

Quercioli, Franco

Franco Quercioli, Bruno Tiribilli, Massimo Vassalli, and Francesca Sbrana, “Autocorrelator designs for nonlinear optical microscopy,” Opt. Eng. 45, (2006).
[CrossRef]

Rebibo, S.

Rudolph, W.

Sbrana, Francesca

Franco Quercioli, Bruno Tiribilli, Massimo Vassalli, and Francesca Sbrana, “Autocorrelator designs for nonlinear optical microscopy,” Opt. Eng. 45, (2006).
[CrossRef]

Schreenath, Aparna

Silberberg, Yaron

Dan Oron and Yaron Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13, 9903–9908 (2005).
[CrossRef] [PubMed]

Nirit Dudovich, Dan Oron, and Yaron Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Silbergerg, Y.

Spahr, Erik

Squier, J.

Squier, J. A.

Squier, Jeff A.

Squier, Jeffery A.

David N. Fittinghoff, Andrew C. Millard, Jeffery A. Squier, and Michiel Mueller, “Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective,” IEEE J. Quantum Electron. 35, (1999).
[CrossRef]

Stamm, U.

Sweetser, John N.

Szabo, G.

Tiribilli, Bruno

Franco Quercioli, Bruno Tiribilli, Massimo Vassalli, and Francesca Sbrana, “Autocorrelator designs for nonlinear optical microscopy,” Opt. Eng. 45, (2006).
[CrossRef]

Trebino, R.

Trebino, Rick

Tünnermann, Andreas

van Dijk, E.M.H.P.

H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
[CrossRef]

van Hulst, N.F.

H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
[CrossRef]

H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiement and theory,” Phys. Rev. E 68, 026604 (2003).
[CrossRef]

M.L.M Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, (2001).
[CrossRef] [PubMed]

M.L.M Balistreri, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19, 1169 (2001).
[CrossRef]

Vassalli, Massimo

Franco Quercioli, Bruno Tiribilli, Massimo Vassalli, and Francesca Sbrana, “Autocorrelator designs for nonlinear optical microscopy,” Opt. Eng. 45, (2006).
[CrossRef]

Vienot, J. Ch.

Cl. Froehly, A. Lacourt, and J. Ch. Vienot, “Time Impulse Responce and time Frequency Responce of Optical Pupils,” Nouvelle Revue D’Optique 4, 183–196 (1973).
[CrossRef]

Wilhelmi, B.

Wolf, Emil

Max Born and Emil Wolf, Principles of Optics (Cambridge University Press, New York, 1999).

Yelin, D.

Zeitner, Uwe D.

Appl. Phys. B (1)

A.P. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, J. Klenbniczki, and Z. Bor, “Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

David N. Fittinghoff, Andrew C. Millard, Jeffery A. Squier, and Michiel Mueller, “Frequency-Resolved Optical Gating Measurement of Ultrashort Pulses Passing Through a High Numerical Aperture Objective,” IEEE J. Quantum Electron. 35, (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature (1)

Nirit Dudovich, Dan Oron, and Yaron Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Nouvelle Revue D’Optique (1)

Cl. Froehly, A. Lacourt, and J. Ch. Vienot, “Time Impulse Responce and time Frequency Responce of Optical Pupils,” Nouvelle Revue D’Optique 4, 183–196 (1973).
[CrossRef]

Opt. Eng. (1)

Franco Quercioli, Bruno Tiribilli, Massimo Vassalli, and Francesca Sbrana, “Autocorrelator designs for nonlinear optical microscopy,” Opt. Eng. 45, (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (12)

Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989).
[CrossRef] [PubMed]

M. Mueller, J. Squier, and G.J. Brakenhoff, “Measurement if femtosecond pulses in the focal point of a high-numerical-aperature lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
[CrossRef]

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, and M. Mueller, “Simultaneous visualizations of spatial and chromatic abberations by two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 31, 2927–2929 (2006).
[CrossRef] [PubMed]

Zs. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14, 862–864 (1989).
[CrossRef] [PubMed]

J. Jasapara and W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[CrossRef]

M. Kempe and W. Rudolph, “Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses,” Opt. Lett. 18, 137–139 (1993).
[CrossRef] [PubMed]

Vadim V. Lozovoy, Igor Pastirk, and Marcos Dantus, “Multiphoton intrepulse interference. IV. Ultrashort pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[CrossRef] [PubMed]

David N. Fittinghoff, Jeff A. Squier, C. P. J. Barty, John N. Sweetser, Rick Trebino, and Michiel Mueller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

Rebecca Chadwick, Erik Spahr, Jeff A. Squier, and Charles G. Durfee, “Fringe-free, background-free, collinear third-harmonic generation frequency-resolved optical gating measurements for multiphoton microscopy,” Opt. Lett. 31, 3366–3368 (2006).
[CrossRef] [PubMed]

A.C Kovaecs, K. Osvay, and Zs Bor, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20, 788–791 (1995).
[CrossRef]

J.P. Geindre, P. Audebert, S. Rebibo, and J.C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26, 1612–1614 (2001).
[CrossRef]

Kazuhiko Misawa and Takayoshi Kobayashi, “Femtosecond Sangac interferometer for phase spectroscopy,” Opt. Lett. 20, (1995).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993).
[CrossRef] [PubMed]

Phys. Rev. E (2)

H. Gersen, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Tracking ultrashort pulses through dispersive media: Experiement and theory,” Phys. Rev. E 68, 026604 (2003).
[CrossRef]

H. Gersen, E.M.H.P. van Dijk, J.P. Korterik, N.F. van Hulst, and L. Kuipers, “Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion,” Phys. Rev. E 70, 066609 (2004).
[CrossRef]

Science (1)

M.L.M Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, (2001).
[CrossRef] [PubMed]

Other (4)

Max Born and Emil Wolf, Principles of Optics (Cambridge University Press, New York, 1999).

“OSLO Optical Design Program,” (Lambda Research Corporation, 2004).

John A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, Inc., New Jersey, 2004).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1269 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for scanning SEA TADPOLE: The reference and unknown pulses enter the device via single-mode fibers. At the output of the fibers in the horizontal dimension, the light is collimated and then spectrally resolved at the camera using the grating and the cylindrical lens. In the vertical dimension, the light emerging from the two fibers crosses at a small angle and makes horizontal spatial fringes at the camera. With a single interferogram obtained in this way, E(ω) is measured at one position. To measure E(x,y,z,ω) of the focusing unknown pulse, the unknown pulse’s entrance fiber is scanned in x, y, and z.

Fig. 2.
Fig. 2.

E(x,z,t) in the focal region of an aspheric lens. The experimental results are displayed in the top plots, and the simulations are in the bottom plots. Each box displays the amplitude of the electric field versus x and t at a distance z from the geometric focus. The color represents the instantaneous wavelength as designated by the color bar on the right. Each set of plots displays the amplitude of the electric field versus −t (so that the leading edge of the pulse appears on the right) and x at a particular longitudinal distance away from the focus. The white dots display the pulse front (defined as the maximum temporal intensity at each x). The same conventions are used for the next several plots as well. In this case, as expected, chromatic aberration causes a flat pulse front to occur after the focus, at about z=1.5 mm.

Fig. 3.
Fig. 3.

E(x,z,t) in the focal region of an achromatic doublet designed for visible light. Significant GDD is apparent due to the thickness of the lens. Because this lens was designed for the visible, and not 800 nm, the pulse fronts are not symmetric about the focus, revealing that some chromatic aberration is also present.

Fig. 4.
Fig. 4.

E(x,z,t) in the focal region of a plano-convex lens. The spherical aberrations introduced by this lens result in ripples in the spatial profile that are particularly visible at z=-0.7mm.

Fig. 5.
Fig. 5.

E(x,z.t) in the focal region of a ZnSe lens with chirp compensation. In these plots, all of the color variation is due to chromatic aberration.

Fig. 6.
Fig. 6.

(1.22 MB) Movie of the focusing pulse from a ZnSe lens with dispersion compensation: In this movie each frame shows E(x,t) at a different z starting a z=-1.4 mm and stopping at z=1.6 mm. As in the earlier plots, the white dots display the pulse front, and the color indicates the instantaneous frequency as shown by the color bar. Note that near the geometric focus (z=0), the instantaneous wavelength changes from blue to red as a function of z, which is expected for chromatic aberration. [Media 1]

Metrics