Abstract

A flexible multicore fiber bundle is fed by temporally and spectrally shaped femtosecond pulses allowing for the pre-compensation of both chromatic dispersion and non-linear effects encountered in the bundle. We demonstrate that the pulse duration at the fiber bundle output can be significantly reduced in comparison with linear pre-compensation only. The scheme for femtosecond pulse fiber delivery is applied to the optimization of two-photon fluorescence (TPF) imaging. Experiments and calculations show a five-fold improvement of the TPF signal produced at the end of the fiber bundle in comparison with linear pre-compensation. This is applied to the recording, in real time (12 image/s), of TPF laser-scanning images of human colon cells stained with a fluorescent marker. Further optimizations are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Denk, J.H. Strickler and W.W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science 248,73 (1990).
    [CrossRef] [PubMed]
  2. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188,267 (2001).
    [CrossRef]
  3. JuergenC. Jung, Amit D. Mehta, Emre Aksay, Raymond Stepnoski and Mark J. Schnitzer, "In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy," J. Neurophys. 92,3121(2004).Q1
    [CrossRef]
  4. JuergenC. Jung and Mark J. Schnitzer, "Multiphoton endoscopy," Opt. Lett. 28,902 (2003).
    [CrossRef] [PubMed]
  5. MichaelJ. Levene, Daniel A. Dombeck, Karl A. Kasischke, Raymond P. Molloy and Watt W. Webb, "In Vivo Multiphoton Microscopy of Deep Brain Tissue," J. Neurophys. 91,1908 (2004).Q2
    [CrossRef]
  6. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L.M. Cheung and M. J. Schnitzer, "Fiber-optic fluorescence imaging", Nature Methods 2,941 (2005).
    [CrossRef] [PubMed]
  7. Damian Bird and Min Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28,1552 (2003).
    [CrossRef] [PubMed]
  8. W. Göbel, J.D. Kerr, A. Nimmerjahn and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective". Opt. Lett. 29,2521 (2004).
    [CrossRef] [PubMed]
  9. L. Fu, X. Gan and M. Gu, "Non-linear optical microscopy based on double-clad photonic crystal fibers," Opt. Express. 13,5528 (2005).
    [CrossRef] [PubMed]
  10. L. Fu and M. Gu, "Double-clad photonic crystal fiber coupler for compact non-linear optical microscopy imaging," Opt. Lett. 31,1471 (2006).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Non-linear Fiber Optics, (San Diego, Calif.,Academic, 1995).
  12. S.P. Tai, M.C. Chan, T.H. Tsai, S.H. Guol, L.J. Chen and C.K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express. 12,6122 (2004)
    [CrossRef] [PubMed]
  13. B.A. Flusberg, J.C. Jung. E.D. Cocker, E.P. Anderson, M.J. Schnitzer. "In vivo - brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30,2272 (2005).
    [CrossRef] [PubMed]
  14. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27,1513 (2002).
    [CrossRef]
  15. F. Helmchen, D.W. Tank, W. Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41,2930 (2002).
    [CrossRef]
  16. M. T. Myaing, D. J. MacDonald and X. Li,"Fiber-optic scanning two-photon fluorescence endoscope», Opt. Lett. 31,1076 (2006).
    [CrossRef] [PubMed]
  17. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 18,565 (1993).
    [CrossRef] [PubMed]
  18. A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe and F. Bérier, "An integrated fibered confocal microscopy system for in vivo and in situ fluoresence imaging - applications to endoscopy in small animal imaging," Proceeding of the IEEE International Symposium on Biomedical Imaging 2004: From Nano to Macro.
  19. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson and E. Vicaut, "Fibered confocal fluorescence microscopy ("Cell Vizio") facilitates extended imaging in the field of microcirculation," J. Vasc. Res. 41,400 (2004).
    [CrossRef] [PubMed]
  20. M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 68,1017 (1993).
    [CrossRef]
  21. B. R. Washburn, J. A. Buck and S. E. Ralph, "Transform-limited spectral compression due to self-phase modulation in fibers," Opt. Lett. 25,445 (2000).
    [CrossRef]
  22. S. W. Clark, F. Ö. Ilday and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26,1320 (2001).
    [CrossRef]
  23. S. Diddams and J.C. Diels, "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13,1120 (1996).
    [CrossRef]
  24. K. König, P.T.C. So, W.W. Mantulin, and E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes," Opt. Lett. 22,135 (1997).
    [CrossRef] [PubMed]
  25. K. König, T.W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24,113 (1999).
    [CrossRef]
  26. S. Kane and J. Squier, "Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification," J. Opt. Soc. Am. B 14,661 (1997).
    [CrossRef]
  27. K.L. Reichenbach and C. Xu, "Numerical analysis of light propagation in image fibers or coherent fiber bundles," Opt. Express. 15, 2151(2007).
    [CrossRef] [PubMed]

2007

K.L. Reichenbach and C. Xu, "Numerical analysis of light propagation in image fibers or coherent fiber bundles," Opt. Express. 15, 2151(2007).
[CrossRef] [PubMed]

2006

2005

B.A. Flusberg, J.C. Jung. E.D. Cocker, E.P. Anderson, M.J. Schnitzer. "In vivo - brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30,2272 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L.M. Cheung and M. J. Schnitzer, "Fiber-optic fluorescence imaging", Nature Methods 2,941 (2005).
[CrossRef] [PubMed]

L. Fu, X. Gan and M. Gu, "Non-linear optical microscopy based on double-clad photonic crystal fibers," Opt. Express. 13,5528 (2005).
[CrossRef] [PubMed]

2004

MichaelJ. Levene, Daniel A. Dombeck, Karl A. Kasischke, Raymond P. Molloy and Watt W. Webb, "In Vivo Multiphoton Microscopy of Deep Brain Tissue," J. Neurophys. 91,1908 (2004).Q2
[CrossRef]

W. Göbel, J.D. Kerr, A. Nimmerjahn and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective". Opt. Lett. 29,2521 (2004).
[CrossRef] [PubMed]

JuergenC. Jung, Amit D. Mehta, Emre Aksay, Raymond Stepnoski and Mark J. Schnitzer, "In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy," J. Neurophys. 92,3121(2004).Q1
[CrossRef]

S.P. Tai, M.C. Chan, T.H. Tsai, S.H. Guol, L.J. Chen and C.K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express. 12,6122 (2004)
[CrossRef] [PubMed]

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson and E. Vicaut, "Fibered confocal fluorescence microscopy ("Cell Vizio") facilitates extended imaging in the field of microcirculation," J. Vasc. Res. 41,400 (2004).
[CrossRef] [PubMed]

2003

2002

2001

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188,267 (2001).
[CrossRef]

S. W. Clark, F. Ö. Ilday and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26,1320 (2001).
[CrossRef]

2000

1999

1997

1996

1993

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 68,1017 (1993).
[CrossRef]

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 18,565 (1993).
[CrossRef] [PubMed]

1990

W. Denk, J.H. Strickler and W.W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science 248,73 (1990).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 68,1017 (1993).
[CrossRef]

J. Neurophys.

JuergenC. Jung, Amit D. Mehta, Emre Aksay, Raymond Stepnoski and Mark J. Schnitzer, "In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy," J. Neurophys. 92,3121(2004).Q1
[CrossRef]

MichaelJ. Levene, Daniel A. Dombeck, Karl A. Kasischke, Raymond P. Molloy and Watt W. Webb, "In Vivo Multiphoton Microscopy of Deep Brain Tissue," J. Neurophys. 91,1908 (2004).Q2
[CrossRef]

J. Opt. Soc. Am. B

J. Vasc. Res.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.F. Le Gargasson and E. Vicaut, "Fibered confocal fluorescence microscopy ("Cell Vizio") facilitates extended imaging in the field of microcirculation," J. Vasc. Res. 41,400 (2004).
[CrossRef] [PubMed]

Nature Methods

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L.M. Cheung and M. J. Schnitzer, "Fiber-optic fluorescence imaging", Nature Methods 2,941 (2005).
[CrossRef] [PubMed]

Opt. Commun.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188,267 (2001).
[CrossRef]

Opt. Express.

L. Fu, X. Gan and M. Gu, "Non-linear optical microscopy based on double-clad photonic crystal fibers," Opt. Express. 13,5528 (2005).
[CrossRef] [PubMed]

S.P. Tai, M.C. Chan, T.H. Tsai, S.H. Guol, L.J. Chen and C.K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express. 12,6122 (2004)
[CrossRef] [PubMed]

K.L. Reichenbach and C. Xu, "Numerical analysis of light propagation in image fibers or coherent fiber bundles," Opt. Express. 15, 2151(2007).
[CrossRef] [PubMed]

Opt. Lett.

K. König, P.T.C. So, W.W. Mantulin, and E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes," Opt. Lett. 22,135 (1997).
[CrossRef] [PubMed]

K. König, T.W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24,113 (1999).
[CrossRef]

B. R. Washburn, J. A. Buck and S. E. Ralph, "Transform-limited spectral compression due to self-phase modulation in fibers," Opt. Lett. 25,445 (2000).
[CrossRef]

S. W. Clark, F. Ö. Ilday and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26,1320 (2001).
[CrossRef]

B.A. Flusberg, J.C. Jung. E.D. Cocker, E.P. Anderson, M.J. Schnitzer. "In vivo - brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30,2272 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27,1513 (2002).
[CrossRef]

L. Fu and M. Gu, "Double-clad photonic crystal fiber coupler for compact non-linear optical microscopy imaging," Opt. Lett. 31,1471 (2006).
[CrossRef] [PubMed]

M. T. Myaing, D. J. MacDonald and X. Li,"Fiber-optic scanning two-photon fluorescence endoscope», Opt. Lett. 31,1076 (2006).
[CrossRef] [PubMed]

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 18,565 (1993).
[CrossRef] [PubMed]

JuergenC. Jung and Mark J. Schnitzer, "Multiphoton endoscopy," Opt. Lett. 28,902 (2003).
[CrossRef] [PubMed]

Damian Bird and Min Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28,1552 (2003).
[CrossRef] [PubMed]

W. Göbel, J.D. Kerr, A. Nimmerjahn and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective". Opt. Lett. 29,2521 (2004).
[CrossRef] [PubMed]

Science

W. Denk, J.H. Strickler and W.W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science 248,73 (1990).
[CrossRef] [PubMed]

Other

A. Perchant, G. Le Goualher, M. Genet, B. Viellerobe and F. Bérier, "An integrated fibered confocal microscopy system for in vivo and in situ fluoresence imaging - applications to endoscopy in small animal imaging," Proceeding of the IEEE International Symposium on Biomedical Imaging 2004: From Nano to Macro.

G. P. Agrawal, Non-linear Fiber Optics, (San Diego, Calif.,Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the optical setup: a specifically designed single-mode multicore fiber bundle from Fujikura (30 000 cores, 3.8 µm core spacing, 1.7 µm core mode field radius, 0.35 N.A.) is excited by temporally and spectrally shaped ultra-short pulses. Each core of the fiber bundle is single-mode at 800 nm (bi-mode at 632 nm) what prevents from intermodal dispersion. A Treacy dispersive line serves for pre-chirping. A first standard single-mode optical fiber ensures the desired spectral shaping.

Fig. 2.
Fig. 2.

(a)oe-15-16-10154-i001 and + respectively measured and calculated FWHMI IR pulse duration with linear and non-linear pre-compensation; ◦ for comparison, measured FWHMI IR pulse duration with linear pre-compensation only. The pulse duration with non-linear compensation is approximately five times shorter than in the case of linear compensation only. Fig. 2(b) measured TPF average power as a function of the IR output pulse energy at the exit of one core of the fiber bundle. The non-linear signal was approximately five times larger with linear and non-linear compensation (oe-15-16-10154-i002) in comparison with linear compensation only (◦) (all other parameters being constant).

Fig. 3.
Fig. 3.

Two-photon image of human colon crypts colored with Rhodamin B. This image has been recorded with only 10 mW of average infrared (IR) power (i.e. 0,13 nJ pulse energy) on the biological tissues using a modified “Cell Vizio” micro-endoscopic imaging system from Mauna Kea Technologies Company. The scale bar is 10 µm. This image has been recorded without any focalization optics at the fiber bundle end.

Fig. 4.
Fig. 4.

(a) Calculated optimized output pulse shape was far from being Gaussian because of non-compensated third order dispersion. Fig. 4(b) measured and calculated spectra at the exit of the fiber bundle. Effect of spectral compression is clearly evidenced. All relevant parameters that have been listed in the experimental setup description (see paragraph 2.) were introduced in the calculation.

Fig. 5.
Fig. 5.

First fiber mode radius optimization. The TPF relative signal that could be produced at the fiber bundle exit has been calculated as a function of the mode radius of the first single-mode fiber, all other parameters being constant. Calculated soliton numbers in the first fiber and in one fiber bundle core are plotted respectively in red circles and in red crosses. TPF is optimized when the two soliton numbers are approximately the same which corresponds to a first fiber mode field radius close to 7 µm.

Metrics