Abstract

We propose a new differential imaging technique to visualize the fine structures and the edges of a sample in coherent anti-Stokes Raman Scattering (CARS) microscopy. Both the pump and Stokes excitation fields are modulated simultaneously with a spiral phase mask which transforms them from Gaussian modes into Laguerre-Gaussian modes of LG01 for CARS excitation. With an accurate three dimensional finite-difference time-domain (FDTD) method, the intensity and phase distributions of focused input fields, the scattering pattern of generated CARS signal as well as the formation of differential images are studied detailedly, and by simulating the sensitivity range and reliability of this method, we have verified that it is much suitable for visualizing structures with a scale comparable to the excitation wavelength and has higher reliability in retrieving chemical structural information of the sample compared to common CARS microscopy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. J.H. Clark and R. E. Hester, Advances in Nonlinear Spectroscopy, (Wiley, New York, 1988) 15.
  2. P.D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys, Rev. 137, A801-A818 (1965).
    [CrossRef]
  3. Y. R. Shen, The principles of nonlinear optics (Wiley, New York, 1984).
  4. J. X. Cheng and X. S. Xie, "Coherent Anti-Stokes Scattering Microscopy: Instrumentation, Theory, and Application," J. Phys. Chem. B. 108,827-840 (2004).
    [CrossRef]
  5. J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of Coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B. 19, 1363-1375 (2002).
    [CrossRef]
  6. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues," Biophysical Journal 89, 581-591 (2005).
    [CrossRef] [PubMed]
  7. E. O. Potma, C. L. Evans, and X. S. Xie, "Heterodyne Coherent anti-Stokes Raman scattering (CARS) imaging," Opt. Lett. 31, 241-243 (2006).
    [CrossRef] [PubMed]
  8. J. P. Ogilvie, E. Beaurepire, A. Alexandrou, and M. Joffre, "Fourier-transform coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 480- 482 (2006).
    [CrossRef] [PubMed]
  9. D. Oron, N. Dudovich, and Y. Silberberg, "Single-Pulse Phase-contrast nonlinear Raman Spectroscopy," Phys. Rev. Lett. 89, 273001-273004 (2002).
    [CrossRef]
  10. E. R. Andresen, H. N. Paulsen, V. Birkedl "Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers," J. Opt. Am. B. 22, 1934-1938 (2005).
    [CrossRef]
  11. J. X. Cheng and X. S. Xie, "Green’s function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B. 19, 1604-1610 (2002).
    [CrossRef]
  12. V. V. Krishnamachari, E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
    [CrossRef]
  13. K. S. Yee. "Numerical solution of initial boundary value problem involving Maxwell equations in isotropic media,".IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
    [CrossRef]
  14. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  15. R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).
  16. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press New York, 1995).
  17. M.W. Beijersbergen, R.P.C. Coewinkel, M. Kristensen, J.P. Woerdman, "Helical-wavefront laser beams produced with a spiral phase plate," Opt. Comm. 112, 321-327 (1994)
    [CrossRef]
  18. K. Crabtree, J. A. Davis, and I. Moreno, "Optical processing with votex-producing lenses," Appl. Opt. 43, 1360-1367(2004).
    [CrossRef] [PubMed]
  19. K. Takeda, Y. Ito and C. Munakata, "Simultaneous measurement of size and refractive index of a fine particle in flowing liquid," Meas. Sci. Technol. 3, 27-32 (1992).
    [CrossRef]
  20. M. Hashimoto and T. Araki, "Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. A 18,771-776 (2001).
    [CrossRef]
  21. L. Cheng, H. Zhiwei, L. Fake, Z. Wei, H. W. Dietmar, S. Colin "Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging," Opt. Express 15, 4118-4131(2007).
    [CrossRef]

2007

2006

2005

E. R. Andresen, H. N. Paulsen, V. Birkedl "Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers," J. Opt. Am. B. 22, 1934-1938 (2005).
[CrossRef]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues," Biophysical Journal 89, 581-591 (2005).
[CrossRef] [PubMed]

2004

J. X. Cheng and X. S. Xie, "Coherent Anti-Stokes Scattering Microscopy: Instrumentation, Theory, and Application," J. Phys. Chem. B. 108,827-840 (2004).
[CrossRef]

K. Crabtree, J. A. Davis, and I. Moreno, "Optical processing with votex-producing lenses," Appl. Opt. 43, 1360-1367(2004).
[CrossRef] [PubMed]

2002

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of Coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B. 19, 1363-1375 (2002).
[CrossRef]

J. X. Cheng and X. S. Xie, "Green’s function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B. 19, 1604-1610 (2002).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "Single-Pulse Phase-contrast nonlinear Raman Spectroscopy," Phys. Rev. Lett. 89, 273001-273004 (2002).
[CrossRef]

2001

1994

M.W. Beijersbergen, R.P.C. Coewinkel, M. Kristensen, J.P. Woerdman, "Helical-wavefront laser beams produced with a spiral phase plate," Opt. Comm. 112, 321-327 (1994)
[CrossRef]

1992

K. Takeda, Y. Ito and C. Munakata, "Simultaneous measurement of size and refractive index of a fine particle in flowing liquid," Meas. Sci. Technol. 3, 27-32 (1992).
[CrossRef]

1966

K. S. Yee. "Numerical solution of initial boundary value problem involving Maxwell equations in isotropic media,".IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[CrossRef]

1965

P.D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys, Rev. 137, A801-A818 (1965).
[CrossRef]

Appl. Opt.

Biophysical Journal

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues," Biophysical Journal 89, 581-591 (2005).
[CrossRef] [PubMed]

IEEE Trans. Antennas Propagat.

K. S. Yee. "Numerical solution of initial boundary value problem involving Maxwell equations in isotropic media,".IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[CrossRef]

J. Opt. Am. B.

E. R. Andresen, H. N. Paulsen, V. Birkedl "Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers," J. Opt. Am. B. 22, 1934-1938 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B.

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of Coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B. 19, 1363-1375 (2002).
[CrossRef]

J. X. Cheng and X. S. Xie, "Green’s function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B. 19, 1604-1610 (2002).
[CrossRef]

J. Phys. Chem. B.

J. X. Cheng and X. S. Xie, "Coherent Anti-Stokes Scattering Microscopy: Instrumentation, Theory, and Application," J. Phys. Chem. B. 108,827-840 (2004).
[CrossRef]

Meas. Sci. Technol.

K. Takeda, Y. Ito and C. Munakata, "Simultaneous measurement of size and refractive index of a fine particle in flowing liquid," Meas. Sci. Technol. 3, 27-32 (1992).
[CrossRef]

Opt. Comm.

M.W. Beijersbergen, R.P.C. Coewinkel, M. Kristensen, J.P. Woerdman, "Helical-wavefront laser beams produced with a spiral phase plate," Opt. Comm. 112, 321-327 (1994)
[CrossRef]

Opt. Express

Opt. Lett.

Phys, Rev.

P.D. Maker and R.W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys, Rev. 137, A801-A818 (1965).
[CrossRef]

Phys. Rev. Lett.

D. Oron, N. Dudovich, and Y. Silberberg, "Single-Pulse Phase-contrast nonlinear Raman Spectroscopy," Phys. Rev. Lett. 89, 273001-273004 (2002).
[CrossRef]

Other

Y. R. Shen, The principles of nonlinear optics (Wiley, New York, 1984).

R. J.H. Clark and R. E. Hester, Advances in Nonlinear Spectroscopy, (Wiley, New York, 1988) 15.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.1.
Fig.1.

Confocal CARS microscopy setup for numerical simulation.

Fig. 2.
Fig. 2.

Simulated amplitudes (upper figures) and phases (lower figures) of a focused spiral phase beam for (a) X, (b) Y, and (c) Z components.

Fig. 3.
Fig. 3.

Calculated far-field CARS radiation patterns with (a) Gaussian and (b) spiral phase excitation beams.

Fig. 4.
Fig. 4.

Simulated amplitudes (upper figures) and phases (lower figures) of a focused spiral phase fields with a polystyrene bead represented with a circle in each left side figure. Right side figures are without polystyrene bead

Fig. 5.
Fig. 5.

Scattered amplitude distribution of focused pump light on the x-z plan near the beam waist with a polystyrene bead (a) and without a bead (b).

Fig. 6.
Fig. 6.

Scattering pattern for the generated CARS signal (a) and x-component of generated CARS electric field just after the poly-bead.

Fig. 7.
Fig. 7.

Simulated CARS image for a 7 um polystyrene square with standard Gaussian excitation beams (a), with LG01 Laguerre-Gaussian beams (b). Line-scan intensity profiles along the crossed lines in CARS images (c).

Fig. 8.
Fig. 8.

CARS signal intensities with LG01 Laguerre-Gaussian excitation beams (a), and with Gaussian excitation beams (b). The ratio of CARS signal only from a scatterer with respect to the total CARS signal for both excitation cases are calculated and plotted in (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

× × E ( r , t ) + n 2 c 2 E ( r , t ) t 2 = 4 π c 2 2 P ( 3 ) ( r , t ) 2 t
P i ( 3 ) ( r , ω as , t ) = 3 j k l χ ijkl ( 3 ) E j p ( r , ω p , t ) E k p ( r , ω p , t ) E l S * ( r , ω s , t )
{ × H = D t × E = B t
{ E x n + 1 ( i + 0.5 , j , k ) = CA ( m ) · E x n ( i + 0.5 , j , k ) + CB ( m ) [ ( H z n + 0.5 ( i + 0.5 , j + 0.5 , k ) H z n + 0.5 ( i + 0.5 , j 0.5 , k ) ) Δ y ( H y n + 0.5 ( i + 0.5 , j , k + 0.5 ) H y n + 0.5 ( i + 0.5 , j , k 0.5 ) ) Δ z E y n + 1 ( i , j + 0.5 , k ) = CA ( m ) · E x n ( i , j + 0.5 , k ) + CB ( m ) [ ( H x n + 0.5 ( i , j + 0.5 , k + 0.5 ) H x n + 0.5 ( i , j + 0.5 , k 0.5 ) ) Δ z ( H y n + 0.5 ( i + 0.5 , j + 0.5 , k ) H z n + 0.5 ( i 0.5 , j + 0.5 , k ) ) Δ x E z n + 1 ( i , j , k + 0.5 ) = CA ( m ) · E x n ( i , j , k + 0.5 ) + CB ( m ) [ H y n + 0.5 ( i + 0.5 , j , k + 0.5 ) H y n + 0.5 ( i 0.5 , j , k + 0.5 ) Δ x ( H x n + 0.5 ( i , j + 0.5 , k + 0.5 ) H x n + 0.5 ( i , j 0.5 , k + 0.5 ) ) Δ y
I Det = Δ y 2 Δ y 2 Δ x 2 + Δ x 2 + + P ( 3 ) ( x , y , ω as ) g ( x 1 x , y 1 y ) d x d y 2 d x 1 d y 1

Metrics