Abstract

We report several signal reconstruction algorithms for processing phase separated homodyne interferometric signals. Methods that take advantage of the phase of the signal are experimentally shown to achieve a signal-to-noise ratio (SNR) improvement of up to 5 dB over commonly used algorithms. To begin, we present a derivation of the SNR resulting from five image reconstruction algorithms in the context of a 3×3 fiber-coupler based homodyne optical coherence tomography (OCT) system, and clearly show the improvement in SNR associated with phase-based algorithms. Finally, we experimentally verify this improvement and demonstrate the enhancement in contrast and improved image quality afforded by these algorithms through homodyne OCT imaging of a Xenopus laevis tadpole. These algorithms can be generally applied in signal extraction processing where multiple phase separated measurements are available.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers

Michael A. Choma, Changhuei Yang, and Joseph A. Izatt
Opt. Lett. 28(22) 2162-2164 (2003)

Homodyne en face optical coherence tomography

Zahid Yaqoob, Jeff Fingler, Xin Heng, and Changhuei Yang
Opt. Lett. 31(12) 1815-1817 (2006)

A generalized noise variance analysis model and its application to the characterization of 1/f noise

Emily J. McDowell, Xiquan Cui, Zahid Yaqoob, and Changhuei Yang
Opt. Express 15(7) 3833-3848 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” J. Opt. Soc. Am. A 8, 822–827 (1991).
    [Crossref]
  2. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref] [PubMed]
  3. E. J. Post, “Sagnac effect,” Rev. Mod.Phys. 39, 475 (1967).
    [Crossref]
  4. D. A. Jackson, A. D. Kersey, and A. C. Lewin, “Fiber gyroscope with passive quadrature detection,” Electron. Lett. 20, 399–401 (1984).
    [Crossref]
  5. S. K. Sheem, “Fiberoptic gyroscope with 3×3 directional coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
    [Crossref]
  6. Z. Yaqoob, J. G. Wu, X. Q. Cui, X. Heng, and C. H. Yang, “Harmonically-related diffraction gratings-based interferometer for quadrature phase measurements,” Opt. Express 14, 8127–8137 (2006).
    [Crossref] [PubMed]
  7. J. G. Wu, Z. Yaqoob, X. Heng, L. M. Lee, X. Q. Cui, and C. H. Yang, “Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer,” Appl. Phys. Lett. 90, (2007).
    [Crossref]
  8. M. A. Choma, C. H. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers,” Opt. Lett. 28, 2162–2164 (2003).
    [Crossref] [PubMed]
  9. Z. Yaqoob, J. Fingler, X. Heng, and C. Yang, “Homodyne en face optical coherence tomography,” Opt. Lett. 31, 1815–1817 (2006).
    [Crossref] [PubMed]
  10. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
    [Crossref]
  11. S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers - analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
    [Crossref]
  12. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957–967 (2005).
    [Crossref] [PubMed]
  13. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006).
    [Crossref] [PubMed]
  14. J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78, 1369–1394 (1990).
    [Crossref]
  15. L. G. Kazovsky, “Optical heterodyning versus optical homodyning: A comparison,” J. Opt. Commun. 6, 18–24 (1985).
  16. S. D. Personic, “Image band interpretation of optical heterodyne noise,” AT&T Tech. J. 50, 213-& (1971).
  17. E. J. McDowell, X. Cui, Y. Yaqoob, and C. Yang, “A generalized noise variance analysis model and its application to the characterization of 1/f noise in homodyne interferometry,” Opt. Express 15, 3833–3848.
    [PubMed]
  18. M. E. Smith and J. H. Strange, “NMR techniques in materials physics: A review,” Meas. Sci. Technol. 7, 449–475 (1996).
    [Crossref]
  19. A. H. Andersen and J. E. Kirsch, “Analysis of noise in phase contrast MR imaging,” Med. Phys 23, 857–869 (1996).
    [Crossref] [PubMed]
  20. C. D. Constantinides, E. Atalar, and E. R. McVeigh, “Signal-to-noise measurements in magnitude images from NMR phased array,” Mag. Res. Med. 38, 852–857 (1997).
    [Crossref]
  21. D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
    [Crossref] [PubMed]
  22. N. Aydin and H. S. Markus, “Time-scale analysis of quadrature Doppler ultrasound signals,” IEE P-Sci. Meas. Tech. 148, 15–22 (2001).
    [Crossref]

2007 (1)

J. G. Wu, Z. Yaqoob, X. Heng, L. M. Lee, X. Q. Cui, and C. H. Yang, “Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer,” Appl. Phys. Lett. 90, (2007).
[Crossref]

2006 (3)

2005 (1)

2004 (1)

D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

N. Aydin and H. S. Markus, “Time-scale analysis of quadrature Doppler ultrasound signals,” IEE P-Sci. Meas. Tech. 148, 15–22 (2001).
[Crossref]

1997 (2)

C. D. Constantinides, E. Atalar, and E. R. McVeigh, “Signal-to-noise measurements in magnitude images from NMR phased array,” Mag. Res. Med. 38, 852–857 (1997).
[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref] [PubMed]

1996 (2)

M. E. Smith and J. H. Strange, “NMR techniques in materials physics: A review,” Meas. Sci. Technol. 7, 449–475 (1996).
[Crossref]

A. H. Andersen and J. E. Kirsch, “Analysis of noise in phase contrast MR imaging,” Med. Phys 23, 857–869 (1996).
[Crossref] [PubMed]

1991 (1)

1990 (1)

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78, 1369–1394 (1990).
[Crossref]

1985 (1)

L. G. Kazovsky, “Optical heterodyning versus optical homodyning: A comparison,” J. Opt. Commun. 6, 18–24 (1985).

1984 (1)

D. A. Jackson, A. D. Kersey, and A. C. Lewin, “Fiber gyroscope with passive quadrature detection,” Electron. Lett. 20, 399–401 (1984).
[Crossref]

1981 (1)

S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers - analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[Crossref]

1980 (1)

S. K. Sheem, “Fiberoptic gyroscope with 3×3 directional coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
[Crossref]

1972 (1)

1971 (1)

S. D. Personic, “Image band interpretation of optical heterodyne noise,” AT&T Tech. J. 50, 213-& (1971).

1967 (1)

E. J. Post, “Sagnac effect,” Rev. Mod.Phys. 39, 475 (1967).
[Crossref]

Andersen, A. H.

A. H. Andersen and J. E. Kirsch, “Analysis of noise in phase contrast MR imaging,” Med. Phys 23, 857–869 (1996).
[Crossref] [PubMed]

Applegate, B. E.

Atalar, E.

C. D. Constantinides, E. Atalar, and E. R. McVeigh, “Signal-to-noise measurements in magnitude images from NMR phased array,” Mag. Res. Med. 38, 852–857 (1997).
[Crossref]

Aydin, N.

N. Aydin and H. S. Markus, “Time-scale analysis of quadrature Doppler ultrasound signals,” IEE P-Sci. Meas. Tech. 148, 15–22 (2001).
[Crossref]

Barry, J. R.

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78, 1369–1394 (1990).
[Crossref]

Choma, M. A.

Constantinides, C. D.

C. D. Constantinides, E. Atalar, and E. R. McVeigh, “Signal-to-noise measurements in magnitude images from NMR phased array,” Mag. Res. Med. 38, 852–857 (1997).
[Crossref]

Cui, X.

Cui, X. Q.

J. G. Wu, Z. Yaqoob, X. Heng, L. M. Lee, X. Q. Cui, and C. H. Yang, “Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer,” Appl. Phys. Lett. 90, (2007).
[Crossref]

Z. Yaqoob, J. G. Wu, X. Q. Cui, X. Heng, and C. H. Yang, “Harmonically-related diffraction gratings-based interferometer for quadrature phase measurements,” Opt. Express 14, 8127–8137 (2006).
[Crossref] [PubMed]

Erdogmus, D.

D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
[Crossref] [PubMed]

Fingler, J.

Fitzsimmons, J. R.

D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
[Crossref] [PubMed]

Heng, X.

Izatt, J. A.

Jackson, D. A.

D. A. Jackson, A. D. Kersey, and A. C. Lewin, “Fiber gyroscope with passive quadrature detection,” Electron. Lett. 20, 399–401 (1984).
[Crossref]

Kazovsky, L. G.

L. G. Kazovsky, “Optical heterodyning versus optical homodyning: A comparison,” J. Opt. Commun. 6, 18–24 (1985).

Kersey, A. D.

D. A. Jackson, A. D. Kersey, and A. C. Lewin, “Fiber gyroscope with passive quadrature detection,” Electron. Lett. 20, 399–401 (1984).
[Crossref]

Kirsch, J. E.

A. H. Andersen and J. E. Kirsch, “Analysis of noise in phase contrast MR imaging,” Med. Phys 23, 857–869 (1996).
[Crossref] [PubMed]

Lai, G.

Larsson, E. G.

D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
[Crossref] [PubMed]

Lee, E. A.

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78, 1369–1394 (1990).
[Crossref]

Lee, L. M.

J. G. Wu, Z. Yaqoob, X. Heng, L. M. Lee, X. Q. Cui, and C. H. Yang, “Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer,” Appl. Phys. Lett. 90, (2007).
[Crossref]

Lewin, A. C.

D. A. Jackson, A. D. Kersey, and A. C. Lewin, “Fiber gyroscope with passive quadrature detection,” Electron. Lett. 20, 399–401 (1984).
[Crossref]

Markus, H. S.

N. Aydin and H. S. Markus, “Time-scale analysis of quadrature Doppler ultrasound signals,” IEE P-Sci. Meas. Tech. 148, 15–22 (2001).
[Crossref]

McDowell, E. J.

McVeigh, E. R.

C. D. Constantinides, E. Atalar, and E. R. McVeigh, “Signal-to-noise measurements in magnitude images from NMR phased array,” Mag. Res. Med. 38, 852–857 (1997).
[Crossref]

Personic, S. D.

S. D. Personic, “Image band interpretation of optical heterodyne noise,” AT&T Tech. J. 50, 213-& (1971).

Post, E. J.

E. J. Post, “Sagnac effect,” Rev. Mod.Phys. 39, 475 (1967).
[Crossref]

Principe, J. C.

D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
[Crossref] [PubMed]

Sarunic, M. V.

Sheem, S. K.

S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers - analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[Crossref]

S. K. Sheem, “Fiberoptic gyroscope with 3×3 directional coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
[Crossref]

Smith, M. E.

M. E. Smith and J. H. Strange, “NMR techniques in materials physics: A review,” Meas. Sci. Technol. 7, 449–475 (1996).
[Crossref]

Snyder, A. W.

Strange, J. H.

M. E. Smith and J. H. Strange, “NMR techniques in materials physics: A review,” Meas. Sci. Technol. 7, 449–475 (1996).
[Crossref]

Wu, J. G.

J. G. Wu, Z. Yaqoob, X. Heng, L. M. Lee, X. Q. Cui, and C. H. Yang, “Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer,” Appl. Phys. Lett. 90, (2007).
[Crossref]

Z. Yaqoob, J. G. Wu, X. Q. Cui, X. Heng, and C. H. Yang, “Harmonically-related diffraction gratings-based interferometer for quadrature phase measurements,” Opt. Express 14, 8127–8137 (2006).
[Crossref] [PubMed]

Yamaguchi, I.

Yan, R.

D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
[Crossref] [PubMed]

Yang, C.

Yang, C. H.

Yaqoob, Y.

Yaqoob, Z.

Yatagai, T.

Zhang, T.

Appl. Phys. Lett. (2)

S. K. Sheem, “Fiberoptic gyroscope with 3×3 directional coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
[Crossref]

J. G. Wu, Z. Yaqoob, X. Heng, L. M. Lee, X. Q. Cui, and C. H. Yang, “Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer,” Appl. Phys. Lett. 90, (2007).
[Crossref]

AT&T Tech. J. (1)

S. D. Personic, “Image band interpretation of optical heterodyne noise,” AT&T Tech. J. 50, 213-& (1971).

Electron. Lett. (1)

D. A. Jackson, A. D. Kersey, and A. C. Lewin, “Fiber gyroscope with passive quadrature detection,” Electron. Lett. 20, 399–401 (1984).
[Crossref]

IEE P-Sci. Meas. Tech. (1)

N. Aydin and H. S. Markus, “Time-scale analysis of quadrature Doppler ultrasound signals,” IEE P-Sci. Meas. Tech. 148, 15–22 (2001).
[Crossref]

J. Appl. Phys. (1)

S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers - analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[Crossref]

J. Magn. Reson. Imaging (1)

D. Erdogmus, R. Yan, E. G. Larsson, J. C. Principe, and J. R. Fitzsimmons, “Image construction methods for phased array magnetic resonance imaging,” J. Magn. Reson. Imaging 20, 306–314 (2004).
[Crossref] [PubMed]

J. Opt. Commun. (1)

L. G. Kazovsky, “Optical heterodyning versus optical homodyning: A comparison,” J. Opt. Commun. 6, 18–24 (1985).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mag. Res. Med. (1)

C. D. Constantinides, E. Atalar, and E. R. McVeigh, “Signal-to-noise measurements in magnitude images from NMR phased array,” Mag. Res. Med. 38, 852–857 (1997).
[Crossref]

Meas. Sci. Technol. (1)

M. E. Smith and J. H. Strange, “NMR techniques in materials physics: A review,” Meas. Sci. Technol. 7, 449–475 (1996).
[Crossref]

Med. Phys (1)

A. H. Andersen and J. E. Kirsch, “Analysis of noise in phase contrast MR imaging,” Med. Phys 23, 857–869 (1996).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Proc. IEEE (1)

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78, 1369–1394 (1990).
[Crossref]

Rev. Mod.Phys. (1)

E. J. Post, “Sagnac effect,” Rev. Mod.Phys. 39, 475 (1967).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental setup for 3×3 fiber coupler based homodyne optical coherence tomography. SLD: superluminescent diode, Dn: nth photodetector, M: mirror, X-Y: x-y scanner, OBJ: 20× microscope objective. (b) In this homodyne system the reference mirror (M) is stationary. We can think of the measured signal as a single point (black arrow) on the modulated coherence function that would be obtained if the reference arm was swept. (c) These points are the projections of a complex value onto axes separated by 120°.

Fig. 2.
Fig. 2.

2×2 (50/50) interferometric setups utilizing a) homodyne and b) heterodyne detection. In (a) the reference mirror is stationary, while it is translated in (b). The 180° phase shifts of the fiber coupler are evident in the acquired signals at the two output ports.

Fig. 3.
Fig. 3.

(a) Reconstructed signals from an attenuated mirror. A beam chopper was used to make measurements of both signal and background noise, which were used to experimentally determine the SNR of the five methods. (b) A magnified view of the noise from (a) depicting experimentally determined values for the mean and variance of the noise.

Fig. 4.
Fig. 4.

These images show a portion of a highly attenuated Air Force test target, representing a very low signal situation. The three images were reconstructed from a single data set and reconstructed using Methods 1–5 (described above). Methods 3 and 5 clearly perform better than the others, showing a notable increase in contrast between the bars of the test target and the background.

Fig. 5.
Fig. 5.

In the first column the image reconstruction algorithms were evaluated on images from a stage 54 Xenopus tadpole. Again, Methods 3 and 5 produced images with improved SNR, more clearly distinguishing biological features such as cell nuclei from background noise. In the second column of images the DC noise has been subtracted from the image. The increase noise variance is now visible in the background of the images corresponding to Methods 1 and 2 in a blown up portion of the background (third column)

Fig. 6.
Fig. 6.

SNR is plotted verses phase error for the five reconstruction methods. Only Methods 3 and 5 are phase dependent. Here, we see that these methods are relatively robust to phase error, only dropping below the other methods for fairly large errors in phase.

Tables (1)

Tables Icon

Table 1. Comparison of theoretical and experimental results. Notably, the phase dependent methods (3 and 5) show superior SNR and noise performance with respect to the others.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

P j ( z ) = P r , j + P s , j + 2 ( 1 s j ) α 41 α 4 j α 51 α 5 j P r ( P S ( z ) γ ( z ) ) cos ( θ ( z ) + φ j ) .
S i = 2 n P R P S ε τ h ν cos ( θ + φ i ) ± N i ,
σ N i = P r ε τ n h υ
M Optimal = 1 4 ( S 1 S 2 ) 2 ,
Sig M Optimal = P R P S ( ε τ h υ ) 2 .
E [ M Optimal ( N i ) ] = E [ 1 4 ( N 1 N 2 ) 2 ] = 1 4 ( E [ N 1 2 ] + E [ N 2 2 ] ) = 1 2 σ 2 .
σ M Optimal 2 = E [ 1 16 ( N 1 N 2 ) 4 ] ( 1 2 σ 2 ) 2 =
= 1 16 E [ N 1 4 ] + 6 16 E [ N 1 2 ] E [ N 2 2 ] + 1 16 E [ N 2 4 ] 1 4 σ 4 .
= 3 16 σ 4 + 6 16 σ 4 + 3 16 σ 4 1 4 σ 4 2 = 1 2 σ 4
SNR optimal = ( Sig M Optimal σ M Optimal ) P R P S ( ε τ h υ ) 2 P R ε τ 2 2 h υ = 2 2 P S ε τ h υ .
M heterodyne = ( i = 1 X ( S i , 1 S i , 2 ) cos ( Δ ω i ) ) 2 + ( i = 1 X ( S i , 1 S i , 2 ) sin ( Δ ω i ) ) 2 ,
E [ M heterodyne ( N i ) ] = 2 X σ 2
σ heterodyne 2 = 4 X 2 σ 4 .
SNR heterodyne = P R P S ( ε τ h υ ) 2 2 X P R ε τ 2 X h υ = P S ε τ h υ .
M heterodyne with phase knowledge = ( i = 1 X ( S i , 1 S i , 2 ) cos ( Δ ω i + θ ) ) 2 .
E [ M heterodyne with phase knowledge ] = X σ 2
σ heterodyne with phase knowledge 2 = 2 X 2 σ 4
SNR heterodyne with phase knowledge = P R P S ( ε τ h υ ) 2 2 X P R ε τ 2 X h υ = 2 P S ε τ h υ .
M 1 = 3 2 ( S 1 2 + S 2 2 + S 3 2 ) .
E [ M 1 ( N i ) ] = 9 2 σ 2
σ M 1 2 = 27 2 σ 4 ,
SNR M 1 = P R P S ( ε τ h υ ) 2 3 3 P R ε τ 2 3 h υ = 6 3 P S ε τ h υ .
S IM = S 1 cos φ 2 S 2 β sin φ 2 β = α 41 α 51 α 42 α 52 .
M 2 = 9 4 ( S RE 2 + S IM 2 ) = 3 ( S 1 2 + S 2 2 + S 1 S 2 ) .
E [ M 2 ( N i ) ] = 6 σ 2
σ M 2 2 = 45 σ 4 ,
SNR M 2 = P R P S ( ε τ h υ ) 2 3 5 P R ε τ 3 h υ = 5 5 P S ε τ h υ .
M 3 = 9 4 [ a 1 S 1 cos ( θ + φ 1 ) + a 2 S 2 cos ( θ + φ 2 ) + a 3 S 3 cos ( θ + φ 3 ) ] 2 .
a i = 2 3 [ cos 2 ( θ + φ i ) ] .
E [ M 3 [ N i ] ] = 3 2 σ 2
σ M 3 2 = 9 2 σ 4
SNR M 3 = P R P S ( ε τ h υ ) 2 3 P R ε τ 2 3 h υ = 2 P S ε τ h υ .
n 2 4 ( i = 1 n a i S i cos ( θ + 2 π n ( i 1 ) ) ) 2 ,
a i = 2 n cos 2 ( θ + 2 π n ( i 1 ) ) .
E [ M 3 , n ports ] = n 2 σ 2
σ M 3 , n ports 2 = 1 2 n 2 σ 4 ,
SNR M 3 , n ports = P R P S ( ε τ h υ ) 2 n P R ε τ 2 n h υ = 2 P S ε τ h υ .
M 4 = ( i = 1 n S i cos ( ϕ i ) ) 2 + ( i = 1 n S i sin ( ϕ i ) ) 2 ,
E [ M 4 ( N i ) ] = n σ 2 .
σ M 4 2 = n 2 σ 4 .
SNR M 4 = ( P R P S ( ε τ h υ ) 2 n P R ε τ n h υ ) = P S ε τ h ν .
M 5 = ( i = 1 n S i cos ( ϕ i + θ ) ) 2
E [ M 5 ( N i ) ] = n 2 σ 2
σ M 5 2 = 1 2 n 2 σ 4 .
SNR M 5 = ( P R P S ( ε τ h υ ) 2 n 2 P R ε τ n h υ ) = 2 P S ε τ h v .

Metrics