Abstract

A full-interaction electromagnetic approach is applied to interpret the local- and far-field properties of AuAg alloy nanoplanets (i.e. a central cluster surrounded by small “satellite” clusters very close to its surface) fabricated in silica by ion implantation and ion irradiation techniques. Optical extinction spectroscopy reveals a large plasmon redshift which is dependent on the irradiation conditions. Simulations strongly suggest that the peculiar topological arrangement of the satellite clusters is responsible for the observed plasmonic features. Theoretical results also indicate that strong local-field enhancement is obtained between coupled clusters. Calculations for Ag models show that enhancement factors as high as ~100 are readily achievable.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Nanoclusters (Springer, 1995).
  2. S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Int. Rev. Phys. Chem. 19, 409-453 (2000).
    [CrossRef]
  3. G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, "Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass," Appl. Phys. Lett. 78, 3953-3955 (2001).
    [CrossRef]
  4. J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, "Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass," Appl. Phys. Lett. 83, 4137-4139 (2003).
    [CrossRef]
  5. S. L. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10,871-10,875 (2004).
    [CrossRef]
  6. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235,408 (2005).
    [CrossRef]
  7. G. Mattei, G. D. Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, "Chemical- or radiationassisted selective dealloying in bimetallic nanoclusters," Phys. Rev. Lett. 90, 085,502 (2003).
    [CrossRef]
  8. M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J. L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, "Optical properties of (AuxAg1-x)(n) clusters embedded in alumina: Evolution with size and stoichiometry," Phys. Rev. B 6408, 085,407 (2001).
  9. K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227,402 (2003).
    [CrossRef]
  10. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
    [CrossRef] [PubMed]
  11. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
    [CrossRef]
  12. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano Lett. 5, 1569-1574 (2005).
    [CrossRef] [PubMed]
  13. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  14. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
    [CrossRef] [PubMed]
  15. D. E. Aspnes, "Local-Field Effects and Effective-Medium Theory - a Microscopic Perspective," Am. J. Phys. 50, 704-709 (1982).
    [CrossRef]
  16. Y. L. Xu, "Electromagnetic Scattering by an Aggregate of Spheres," Appl. Optics 34, 4573-4588 (1995).
    [CrossRef]
  17. G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mat. Sci. Eng. C (to be published).
  18. G. Mattei, "Alloy nanoclusters in dielectric matrix," Nucl. Instrum. Methods Phys. Res. B 191, 323-332 (2002).
    [CrossRef]
  19. V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, "Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2," J. Non-Cryst. Solids 345-46, 685-688 (2004).
  20. S. Link, Z. L. Wang, and M. A. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," J. Phys. Chem. B 103, 3529-3533 (1999).
    [CrossRef]
  21. P. Mazzoldi and G. Mattei, "Potentialities of ion implantation for the synthesis and modification of metal nanoclusters," Riv. Del Nuovo Cimento 28, 1-69 (2005).
  22. K. Ripken, "Die optischen Konstanten von Au, Ag und ihren Legierungen im Energiebereich 2,4 bis 4,4 eV," Z. Physik 50, 228-234 (1972).
    [CrossRef]
  23. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, "Width of Cluster Plasmon Resonances - Bulk Dielectric Functions and Chemical Interface Damping," Phys. Rev. B 48, 18, 178-18,188 (1993).
    [CrossRef]

2005 (4)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235,408 (2005).
[CrossRef]

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano Lett. 5, 1569-1574 (2005).
[CrossRef] [PubMed]

P. Mazzoldi and G. Mattei, "Potentialities of ion implantation for the synthesis and modification of metal nanoclusters," Riv. Del Nuovo Cimento 28, 1-69 (2005).

2004 (2)

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, "Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2," J. Non-Cryst. Solids 345-46, 685-688 (2004).

S. L. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10,871-10,875 (2004).
[CrossRef]

2003 (4)

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, "Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass," Appl. Phys. Lett. 83, 4137-4139 (2003).
[CrossRef]

G. Mattei, G. D. Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, "Chemical- or radiationassisted selective dealloying in bimetallic nanoclusters," Phys. Rev. Lett. 90, 085,502 (2003).
[CrossRef]

K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227,402 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

2002 (1)

G. Mattei, "Alloy nanoclusters in dielectric matrix," Nucl. Instrum. Methods Phys. Res. B 191, 323-332 (2002).
[CrossRef]

2001 (2)

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J. L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, "Optical properties of (AuxAg1-x)(n) clusters embedded in alumina: Evolution with size and stoichiometry," Phys. Rev. B 6408, 085,407 (2001).

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, "Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass," Appl. Phys. Lett. 78, 3953-3955 (2001).
[CrossRef]

2000 (1)

S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Int. Rev. Phys. Chem. 19, 409-453 (2000).
[CrossRef]

1999 (2)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," J. Phys. Chem. B 103, 3529-3533 (1999).
[CrossRef]

1998 (1)

1995 (1)

Y. L. Xu, "Electromagnetic Scattering by an Aggregate of Spheres," Appl. Optics 34, 4573-4588 (1995).
[CrossRef]

1993 (1)

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, "Width of Cluster Plasmon Resonances - Bulk Dielectric Functions and Chemical Interface Damping," Phys. Rev. B 48, 18, 178-18,188 (1993).
[CrossRef]

1982 (1)

D. E. Aspnes, "Local-Field Effects and Effective-Medium Theory - a Microscopic Perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

1972 (1)

K. Ripken, "Die optischen Konstanten von Au, Ag und ihren Legierungen im Energiebereich 2,4 bis 4,4 eV," Z. Physik 50, 228-234 (1972).
[CrossRef]

Am. J. Phys. (1)

D. E. Aspnes, "Local-Field Effects and Effective-Medium Theory - a Microscopic Perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

Appl. Optics (1)

Y. L. Xu, "Electromagnetic Scattering by an Aggregate of Spheres," Appl. Optics 34, 4573-4588 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, "Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass," Appl. Phys. Lett. 78, 3953-3955 (2001).
[CrossRef]

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, "Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass," Appl. Phys. Lett. 83, 4137-4139 (2003).
[CrossRef]

Int. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Int. Rev. Phys. Chem. 19, 409-453 (2000).
[CrossRef]

J. Chem. Phys. (1)

S. L. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10,871-10,875 (2004).
[CrossRef]

J. Non-Cryst. Solids (1)

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, "Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2," J. Non-Cryst. Solids 345-46, 685-688 (2004).

J. Phys. Chem. B (1)

S. Link, Z. L. Wang, and M. A. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," J. Phys. Chem. B 103, 3529-3533 (1999).
[CrossRef]

Nano Lett. (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano Lett. 5, 1569-1574 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

G. Mattei, "Alloy nanoclusters in dielectric matrix," Nucl. Instrum. Methods Phys. Res. B 191, 323-332 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, "Width of Cluster Plasmon Resonances - Bulk Dielectric Functions and Chemical Interface Damping," Phys. Rev. B 48, 18, 178-18,188 (1993).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235,408 (2005).
[CrossRef]

M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J. L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, "Optical properties of (AuxAg1-x)(n) clusters embedded in alumina: Evolution with size and stoichiometry," Phys. Rev. B 6408, 085,407 (2001).

Phys. Rev. Lett. (3)

K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227,402 (2003).
[CrossRef]

G. Mattei, G. D. Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, "Chemical- or radiationassisted selective dealloying in bimetallic nanoclusters," Phys. Rev. Lett. 90, 085,502 (2003).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Riv. Del Nuovo Cimento (1)

P. Mazzoldi and G. Mattei, "Potentialities of ion implantation for the synthesis and modification of metal nanoclusters," Riv. Del Nuovo Cimento 28, 1-69 (2005).

Z. Physik (1)

K. Ripken, "Die optischen Konstanten von Au, Ag und ihren Legierungen im Energiebereich 2,4 bis 4,4 eV," Z. Physik 50, 228-234 (1972).
[CrossRef]

Other (2)

U. Kreibig and M. Vollmer, Optical Properties of Metal Nanoclusters (Springer, 1995).

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mat. Sci. Eng. C (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental optical extinctions for unirradiated and irradiated samples as described in Table 1, measured with unpolarized light. (b) Theoretical extinction spectra for a single Au0.6Ag0.4 particle of 12 nm of radius (black line), and for targets reported in Fig.4 (dashed, dot-dashed, and short dashed lines), following GMM approach. Empty and filled circles correspond to spectra calculated following MMG approach.

Fig. 2.
Fig. 2.

Cross-sectional TEM images of unirradiated and Ne+ irradiated samples. (a) AuAg sample before irradiation, (b) 100 KeV, 5.2×1016 ions/cm2 Ne+ irradiated sample.

Fig. 3.
Fig. 3.

Schematic representation of MMG model target construction.

Fig. 4.
Fig. 4.

(Color online) Assumed targets, corresponding TEM images and |E| plots at the plasmon wavelength for each of the three irradiated samples. Field polarization and propagation direction always as in (b).

Tables (1)

Tables Icon

Table 1. Nuclear fraction of the total energy loss, satellite diameter, maximum satellite distance from central cluster and satellite Au/Ag ratio.

Metrics