Abstract

The use of a silicon-on-insulator diffractive grating structure is proposed to achieve ultra-compact duplexing operation. One-dimensional grating structures are proposed to spatially separate two wavelength bands. This device can become a key component in the fabrication of integrated optical transceivers for fiber-to-the-home applications, where a 1310nm wavelength channel and a 1490nm wavelength channel need to be duplexed. A 10µm×10µm one-dimensional grating structure allows to spatially separate both wavelength bands on the photonic integrated circuit, with an average coupling efficiency of 55% and an optical bandwidth of 55–60nm. While these one-dimensional grating structures are strongly polarization dependent, a two-dimensional grating structure is presented to achieve polarization independent operation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, "Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004)
    [CrossRef]
  2. Y. Akahane, T. Asano, B.S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
    [CrossRef] [PubMed]
  3. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003)
    [CrossRef]
  4. C. Gunn, "CMOS photonics for high-speed interconnects," IEEE micro 26, 58-66 (2006)
    [CrossRef]
  5. T. Koonen, "Fiber to the home/fiber to the premises: what, where and when?," Proc. of the IEEE 94, 911-934 (2006)
    [CrossRef]
  6. G. Roelkens, D. Van Thourhout, R. Baets, "High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay," Opt. Express 14, 11622-11630 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11622
    [CrossRef] [PubMed]
  7. P. Bienstman, R. Baets, "Rigourous and efficient optical VCSEL model based on vectorial eigenmode expansion and perfectly matched layers," IEE Proc.-Optoelec. 149, 161-165 (2002)
    [CrossRef]
  8. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, "A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires," Opt. Express 15, 1567-1578 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1567
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

C. Gunn, "CMOS photonics for high-speed interconnects," IEEE micro 26, 58-66 (2006)
[CrossRef]

T. Koonen, "Fiber to the home/fiber to the premises: what, where and when?," Proc. of the IEEE 94, 911-934 (2006)
[CrossRef]

G. Roelkens, D. Van Thourhout, R. Baets, "High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay," Opt. Express 14, 11622-11630 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11622
[CrossRef] [PubMed]

2004 (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, "Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004)
[CrossRef]

2003 (2)

Y. Akahane, T. Asano, B.S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003)
[CrossRef]

2002 (1)

P. Bienstman, R. Baets, "Rigourous and efficient optical VCSEL model based on vectorial eigenmode expansion and perfectly matched layers," IEE Proc.-Optoelec. 149, 161-165 (2002)
[CrossRef]

IEE Proc.-Optoelec. (1)

P. Bienstman, R. Baets, "Rigourous and efficient optical VCSEL model based on vectorial eigenmode expansion and perfectly matched layers," IEE Proc.-Optoelec. 149, 161-165 (2002)
[CrossRef]

IEEE micro (1)

C. Gunn, "CMOS photonics for high-speed interconnects," IEEE micro 26, 58-66 (2006)
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, "Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004)
[CrossRef]

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003)
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B.S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

Opt. Express (2)

Proc. of the IEEE (1)

T. Koonen, "Fiber to the home/fiber to the premises: what, where and when?," Proc. of the IEEE 94, 911-934 (2006)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Proposed design of an ultra-compact wavelength duplexer based on diffractive fiber-to-waveguide grating couplers

Fig. 2.
Fig. 2.

Diffraction angle of light with a wavelength of 1310nm (1490nm) exciting the grating from the left hand side (right hand side). The intersection of both curves determines the working point for duplexer operation (a) and the wavevector diagram for the duplexer configuration (b)

Fig. 3.
Fig. 3.

Average fiber coupling efficiency of both wavelength channels as a function of the number of grating periods and the position of the optical fiber

Fig. 4.
Fig. 4.

Coupling efficiency spectrum for both wavelength channels for the optimized duplexer grating

Fig. 5.
Fig. 5.

Electric field plot of the duplexer grating structure when illuminated from an optical fiber for both wavelength channels, illustrating the duplexing behavior.

Fig. 6.
Fig. 6.

Origin of crosstalk when using this duplexer structure in transceiver configuration (a) and the influence of the grating length on crosstalk and average fiber coupling efficiency (b)

Fig. 7.
Fig. 7.

Layout of the grating duplexer structure for polarization diversity operation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = E diff × H fib * · dn 2

Metrics