Abstract

We have achieved low threshold lasing of self-assembled InAs/GaAs quantum dots coupled to the evanescent wave of the high-Q whispering gallery modes of a silica microsphere. In spite of high temperature and Q-spoiling of whispering gallery modes due to diffusion and refraction on the high index semiconductor sample, room temperature lasing is obtained with less than 100 quantum dots. This result highlights the feasibility and interest of combining self-assembled quantum dots and microspheres in view of cavity-quantum electrodynamics experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, "Charged excitons in self-assembled semiconductor quantum dots," Phys. Rev. Lett. 79, 5282-5285 (1997).
    [CrossRef]
  2. J.-Y. Marzin, J.-M. Gérard, A. Izraël, D. Barrier, and G. Bastard, "Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs," Phys. Rev. Lett. 73, 716 (1994).
    [CrossRef] [PubMed]
  3. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, R041308 (2002).
    [CrossRef]
  4. C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J.-M. Gérard, "Line narrowing in single semiconductor quantum dots: Toward the control of environment effects," Phys. Rev. B 66, R041306 (2002).
    [CrossRef]
  5. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef] [PubMed]
  6. S. Haroche, "Cavity quantum electrodynamics," in "Fundamental Systems in Quantum Optics," J. Dalibard, J. Raimond, and J. Zinn-Justin, eds. (North Holland, 1992), Les Houches Summer School, Session LIII.
  7. J.-M. Gérard, Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots (Springer, Berlin / Heidelberg, 2003), vol. 90 of Topics in Applied Physics, pp. 269 - 314.
  8. J.-M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
    [CrossRef]
  9. E. Moreau, I. Robert, J.-M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
    [CrossRef]
  10. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594 (2002).
    [CrossRef] [PubMed]
  11. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  12. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197 (2004).
  13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
    [CrossRef] [PubMed]
  14. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
    [CrossRef] [PubMed]
  15. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005).
    [CrossRef]
  16. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  17. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-factor and non-linear properties of optical whispering-gallery modes," Phys. Lett. A 137, 393-397 (1989).
    [CrossRef]
  18. L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, "Very high-Q whispering-gallery mode resonances observed on fused silica microspheres," Europhys. Lett. 23, 327 (1993).
    [CrossRef]
  19. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  20. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery mode microsphere laser," Phys. Rev. A 54, R1777 (1996).
    [CrossRef] [PubMed]
  21. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, "Very low threshold lasing in Er3+ doped ZBLAN microsphere," Electron. Lett. 35, 1745-1746 (1999).
    [CrossRef]
  22. F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, "Erbium-doped microspherical lasers at 1.56 μm," Electr. Lett. 36, 1382-1384 (2000).
    [CrossRef]
  23. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett. 25, 1430 (2000).
    [CrossRef]
  24. L. Yang, D. K. Armani, and K. J. Vahala, "Fiber-coupled erbium microlasers on a chip," Appl. Phys. Lett. 83, 825-827 (2003).
    [CrossRef]
  25. X. Fan, S. Lacey, and H. Wang, "Microcavities combining a semiconductor with a fused-silica microsphere," Opt. Lett. 24, 771 (1999).
    [CrossRef]
  26. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fusedsilica microsphere: A quantum-dot microcavity with extremely high q factors," Opt Lett. 25, 1600 (2000).
    [CrossRef]
  27. S. Gotzinger, L. D. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator," Nano Lett. 6, 1151-1154 (2006).
    [CrossRef] [PubMed]
  28. N. L. Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, "Cavity QED with semiconductor nanocrystals," Nano Lett. 6, 557-561 (2006).
    [CrossRef] [PubMed]
  29. I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and L. Davidovich, "Quantum theory of a thresholdless laser," Phys. Rev. A 59, 1667-1682 (1999).
    [CrossRef]
  30. M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
    [CrossRef]
  31. V. Lefèvre-Seguin, J. C. Knight, V. Sandoghdar, D. Weiss, J. Hare, J.-M. Raimond, and S. Haroche, Very High-Q Whispering-Gallery Modes in Silica Microspheres for Cavity-QED Experiments (World Scientific, 1996), chap. 3, no. 3 in Advanced Series in Applied Physics.
  32. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Mapping whispering-gallery modes in microspheres using a near-field probe," Opt. Lett. 20, 1515 (1995).
    [CrossRef] [PubMed]
  33. P. Borri, W. Langbein, J. Moîrk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, "Dephasing in InAs/GaAs quantum dots," Phys. Rev. B 60, 7784 (1999).
    [CrossRef]
  34. F.-M. Treussart, "Etude expérimentale de l’effet Laser dans des microsphères de silice dop ees avec des ions néodyme," Ph.D. thesis, Université Paris VI (1997).
  35. S. Steiner, "Microsphères de silice et Boîtes quantiques InAs/GaAs: réalisation d’un microlaser faible seuil," Ph.D. thesis, Université Paris VI (2003).
  36. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, "Eroded monomode optical fiber for excitation in fused-silica microspheres," Opt. Lett. 20, 813 (1995).
    [CrossRef] [PubMed]
  37. F. Treussart, V. S. Ilchenko, J-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium," Eur. Phys. J. D 1, 235-238 (1998).
  38. Even at 778 nm the large imaginary part of ND. 3.67+i 0.29 gives r..0.78+i 0.54, leading to the same conclusion.
  39. The small increase of the coupling efficiency on each side of the central drop indicates the crossing of critical coupling for prim-sphere interaction, initially over-coupled.

2006 (2)

S. Gotzinger, L. D. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

N. L. Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, "Cavity QED with semiconductor nanocrystals," Nano Lett. 6, 557-561 (2006).
[CrossRef] [PubMed]

2005 (4)

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

2004 (2)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197 (2004).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925 (2003).
[CrossRef] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, "Fiber-coupled erbium microlasers on a chip," Appl. Phys. Lett. 83, 825-827 (2003).
[CrossRef]

2002 (3)

M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, R041308 (2002).
[CrossRef]

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J.-M. Gérard, "Line narrowing in single semiconductor quantum dots: Toward the control of environment effects," Phys. Rev. B 66, R041306 (2002).
[CrossRef]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

2001 (2)

E. Moreau, I. Robert, J.-M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

2000 (3)

X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fusedsilica microsphere: A quantum-dot microcavity with extremely high q factors," Opt Lett. 25, 1600 (2000).
[CrossRef]

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, "Erbium-doped microspherical lasers at 1.56 μm," Electr. Lett. 36, 1382-1384 (2000).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett. 25, 1430 (2000).
[CrossRef]

1999 (5)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, "Very low threshold lasing in Er3+ doped ZBLAN microsphere," Electron. Lett. 35, 1745-1746 (1999).
[CrossRef]

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and L. Davidovich, "Quantum theory of a thresholdless laser," Phys. Rev. A 59, 1667-1682 (1999).
[CrossRef]

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

X. Fan, S. Lacey, and H. Wang, "Microcavities combining a semiconductor with a fused-silica microsphere," Opt. Lett. 24, 771 (1999).
[CrossRef]

P. Borri, W. Langbein, J. Moîrk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, "Dephasing in InAs/GaAs quantum dots," Phys. Rev. B 60, 7784 (1999).
[CrossRef]

1998 (2)

F. Treussart, V. S. Ilchenko, J-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium," Eur. Phys. J. D 1, 235-238 (1998).

J.-M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

1997 (1)

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, "Charged excitons in self-assembled semiconductor quantum dots," Phys. Rev. Lett. 79, 5282-5285 (1997).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery mode microsphere laser," Phys. Rev. A 54, R1777 (1996).
[CrossRef] [PubMed]

1995 (2)

1994 (1)

J.-Y. Marzin, J.-M. Gérard, A. Izraël, D. Barrier, and G. Bastard, "Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs," Phys. Rev. Lett. 73, 716 (1994).
[CrossRef] [PubMed]

1993 (1)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, "Very high-Q whispering-gallery mode resonances observed on fused silica microspheres," Europhys. Lett. 23, 327 (1993).
[CrossRef]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-factor and non-linear properties of optical whispering-gallery modes," Phys. Lett. A 137, 393-397 (1989).
[CrossRef]

Appl. Phys. Lett. (3)

E. Moreau, I. Robert, J.-M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[CrossRef]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005).
[CrossRef]

L. Yang, D. K. Armani, and K. J. Vahala, "Fiber-coupled erbium microlasers on a chip," Appl. Phys. Lett. 83, 825-827 (2003).
[CrossRef]

Electr. Lett. (1)

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, "Erbium-doped microspherical lasers at 1.56 μm," Electr. Lett. 36, 1382-1384 (2000).
[CrossRef]

Electron. Lett. (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, "Very low threshold lasing in Er3+ doped ZBLAN microsphere," Electron. Lett. 35, 1745-1746 (1999).
[CrossRef]

Eur. Phys. J. D (1)

F. Treussart, V. S. Ilchenko, J-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium," Eur. Phys. J. D 1, 235-238 (1998).

Europhys. Lett. (1)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, "Very high-Q whispering-gallery mode resonances observed on fused silica microspheres," Europhys. Lett. 23, 327 (1993).
[CrossRef]

Nano Lett. (2)

S. Gotzinger, L. D. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

N. L. Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, "Cavity QED with semiconductor nanocrystals," Nano Lett. 6, 557-561 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nature (4)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197 (2004).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925 (2003).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

Opt Lett. (1)

X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fusedsilica microsphere: A quantum-dot microcavity with extremely high q factors," Opt Lett. 25, 1600 (2000).
[CrossRef]

Opt. Lett. (4)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-factor and non-linear properties of optical whispering-gallery modes," Phys. Lett. A 137, 393-397 (1989).
[CrossRef]

Phys. Rev. A (3)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery mode microsphere laser," Phys. Rev. A 54, R1777 (1996).
[CrossRef] [PubMed]

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and L. Davidovich, "Quantum theory of a thresholdless laser," Phys. Rev. A 59, 1667-1682 (1999).
[CrossRef]

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

Phys. Rev. B (3)

P. Borri, W. Langbein, J. Moîrk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, "Dephasing in InAs/GaAs quantum dots," Phys. Rev. B 60, 7784 (1999).
[CrossRef]

M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, R041308 (2002).
[CrossRef]

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J.-M. Gérard, "Line narrowing in single semiconductor quantum dots: Toward the control of environment effects," Phys. Rev. B 66, R041306 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, "Charged excitons in self-assembled semiconductor quantum dots," Phys. Rev. Lett. 79, 5282-5285 (1997).
[CrossRef]

J.-Y. Marzin, J.-M. Gérard, A. Izraël, D. Barrier, and G. Bastard, "Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs," Phys. Rev. Lett. 73, 716 (1994).
[CrossRef] [PubMed]

J.-M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Other (7)

S. Haroche, "Cavity quantum electrodynamics," in "Fundamental Systems in Quantum Optics," J. Dalibard, J. Raimond, and J. Zinn-Justin, eds. (North Holland, 1992), Les Houches Summer School, Session LIII.

J.-M. Gérard, Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots (Springer, Berlin / Heidelberg, 2003), vol. 90 of Topics in Applied Physics, pp. 269 - 314.

F.-M. Treussart, "Etude expérimentale de l’effet Laser dans des microsphères de silice dop ees avec des ions néodyme," Ph.D. thesis, Université Paris VI (1997).

S. Steiner, "Microsphères de silice et Boîtes quantiques InAs/GaAs: réalisation d’un microlaser faible seuil," Ph.D. thesis, Université Paris VI (2003).

Even at 778 nm the large imaginary part of ND. 3.67+i 0.29 gives r..0.78+i 0.54, leading to the same conclusion.

The small increase of the coupling efficiency on each side of the central drop indicates the crossing of critical coupling for prim-sphere interaction, initially over-coupled.

V. Lefèvre-Seguin, J. C. Knight, V. Sandoghdar, D. Weiss, J. Hare, J.-M. Raimond, and S. Haroche, Very High-Q Whispering-Gallery Modes in Silica Microspheres for Cavity-QED Experiments (World Scientific, 1996), chap. 3, no. 3 in Advanced Series in Applied Physics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme of our experimental setup (not to scale). µS: microsphere; Pr: SF11 glass coupling prism; S: sample; Ch : chopper; T : attenuator; BS : beam-splitter; DBS : dichroic beam-splitter; P: polarization analyzer; F:Wratten 87C or Schott RG1000 filter. PD1/2: silicon photodiodes for pump monitoring, PD3: InGaAs photodiode for QDs emission monitoring. Bottom inset:WGM coupling geometry, showing the excitation prism Pr, the spherical microcavity µS and the sample S.

Fig. 2.
Fig. 2.

Evolution of the width (▪), shift (▵) and coupling (•) when the sample is scanned along y for arbitrarily fixed g 1 and g 2 (see Fig. 1 for axes and gaps definitions). Inset : Photograph of the sphere (diameter 140 µm) in front of the microstructured sample. The sphere is on the right and the image to the left is its reflection in the sample. The small dots are 4 µm×4 µm mesas, 200 nm in height, revealed by grazing illumination.

Fig. 3.
Fig. 3.

Emission vs. absorption laser characteristics for bothWGMpolarizations. The background curve shows the residual fraction of pump laser fluorescence at wavelength higher than 900 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r i N eff 2 1 N D 2 N eff 2 i N eff 2 1 + N D 2 N eff 2 ,
n ( th ) = 𝓝 c ( th ) W Γ 1 𝓝 c ( th ) Ω R 2 γ hom Γ 1 ,
γ inh 2 π 25,000 GHz γ hom 2 π 2,500 GHz Δ ω FSR 2 π 500 GHz Γ 2 π 1 GHz

Metrics