Abstract

We report on an iterative design scheme for and the first experimental demonstration of active narrowband multi-wavelength filters based on aperiodically poled lithium niobate crystals. A simultaneous transmission of 8 wavelengths, each with a ~0.45-nm linewidth and nearly 100% peak transmittance, was achieved in such a device. The transmission spectrum of this device can be tuned by temperature at a rate of ~0.65 nm/°C.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398-399, 1-9 (2001).
    [CrossRef]
  2. J. W. Evans, "Solc birefringent filter," J. Opt. Soc. Am. 48, 142-145 (1958).
    [CrossRef]
  3. R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
    [CrossRef]
  4. R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE↔TM mode converter with low drive voltage," Opt. Lett. 5, 473-475 (1980).
    [CrossRef] [PubMed]
  5. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
    [CrossRef] [PubMed]
  6. Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 Laser Using an Electro-optic PPLN Crystal as a Laser Q-switch," Opt. Lett. 28, 1460-1462 (2003).
    [CrossRef] [PubMed]
  7. J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995).
    [CrossRef]
  8. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983).
    [CrossRef] [PubMed]
  9. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, M. H. Chou, "Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate," Opt. Lett. 27, 2191-2193 (2002).
    [CrossRef]
  10. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
    [CrossRef]
  11. B. Y. Gu, Y. Zhang, and B. Z. Dong, "Investigations of harmonic generations in aperiodic optical superlattices," J. Appl. Phys. 87, 7629-7637 (2000).
    [CrossRef]
  12. X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
    [CrossRef]
  13. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12,2102-2116 (1995).
    [CrossRef]
  14. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Exp. 15, 2548-2554 (2007).
    [CrossRef]
  15. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992).
    [CrossRef]

2007

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Exp. 15, 2548-2554 (2007).
[CrossRef]

2004

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

2003

2002

2001

R. R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398-399, 1-9 (2001).
[CrossRef]

2000

B. Y. Gu, Y. Zhang, and B. Z. Dong, "Investigations of harmonic generations in aperiodic optical superlattices," J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

1995

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12,2102-2116 (1995).
[CrossRef]

J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992).
[CrossRef]

1983

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983).
[CrossRef] [PubMed]

1980

R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
[CrossRef]

R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE↔TM mode converter with low drive voltage," Opt. Lett. 5, 473-475 (1980).
[CrossRef] [PubMed]

1973

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

1958

Alferness, R. C.

R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE↔TM mode converter with low drive voltage," Opt. Lett. 5, 473-475 (1980).
[CrossRef] [PubMed]

R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
[CrossRef]

Bosenberg, W. R.

Buhl, L. L.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12,2102-2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992).
[CrossRef]

Chen, X.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Chen, Y.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Chen, Y. H.

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Exp. 15, 2548-2554 (2007).
[CrossRef]

Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 Laser Using an Electro-optic PPLN Crystal as a Laser Q-switch," Opt. Lett. 28, 1460-1462 (2003).
[CrossRef] [PubMed]

Chou, M. H.

Dong, B. Z.

Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, M. H. Chou, "Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate," Opt. Lett. 27, 2191-2193 (2002).
[CrossRef]

B. Y. Gu, Y. Zhang, and B. Z. Dong, "Investigations of harmonic generations in aperiodic optical superlattices," J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

Eckardt, R. C.

Evans, J. W.

Fan, F. C.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12,2102-2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992).
[CrossRef]

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Gu, B. Y.

Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, M. H. Chou, "Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate," Opt. Lett. 27, 2191-2193 (2002).
[CrossRef]

B. Y. Gu, Y. Zhang, and B. Z. Dong, "Investigations of harmonic generations in aperiodic optical superlattices," J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

Gu, X.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

Huang, C. Y.

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Exp. 15, 2548-2554 (2007).
[CrossRef]

Huang, Y. C.

Ito, R.

J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992).
[CrossRef]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Kondo, T.

J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995).
[CrossRef]

Lee, Y. W.

Lin, C. H.

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Exp. 15, 2548-2554 (2007).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992).
[CrossRef]

Myers, L. E.

Pierce, J. W.

Shi, J.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Willey, R. R.

R. R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398-399, 1-9 (2001).
[CrossRef]

Wu, J.

J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995).
[CrossRef]

Xia, Y.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

Zeng, X.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

Zhang, Y.

B. Y. Gu, Y. Zhang, and B. Z. Dong, "Investigations of harmonic generations in aperiodic optical superlattices," J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

Zhu, Y.

Appl. Phys. Lett.

R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992).
[CrossRef]

J. Appl. Phys.

B. Y. Gu, Y. Zhang, and B. Z. Dong, "Investigations of harmonic generations in aperiodic optical superlattices," J. Appl. Phys. 87, 7629-7637 (2000).
[CrossRef]

J. Lightwave Technol.

J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Comm.

X. Gu, X. Chen, Y. Chen, X. Zeng, Y. Xia, and Y. Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004).
[CrossRef]

Opt. Exp.

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Exp. 15, 2548-2554 (2007).
[CrossRef]

Opt. Lett.

Science

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983).
[CrossRef] [PubMed]

Thin Solid Films

R. R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398-399, 1-9 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Calculated transmittance versus applied electric field for the 5-cm long APLN filter (green curve) and a 5/8-cm long PPLN filter (blue curve) phase-matched at 1548.51 nm. The peak-transmission driving field for the PPLN filter is 2.4 times larger than that for the APLN filter. (b) Calculated transmission spectra for the APLN filter driven at the optimal field 277 V/mm (green curve), the APLN filter driven at 100 V/mm (black dashed curve), the single-segment PPLN filter driven at 675 V/mm (blue dash-dotted curve), and the 8-segment cascaded PPLN filter driven at 675 V/mm (red dotted curve). The crosstalk among channels renders the cascaded PPLN filter useless.

Fig. 2.
Fig. 2.

Calculated (solid line) and measured (open circles) transmission spectra of the 5-cm long EO APLN filter. The two spectral curves agree reasonably well, except that the side lobes in the experimental curve are more apparent. The inset shows a microscopic image of an HF-etched z surface of the fabricated APLN crystal. The label in the inset indicates the width of the unit domain block used in this APLN crystal, i.e., Δx=5 µm.

Fig. 3.
Fig. 3.

(a) Green curve: Calculated output spectrum of the 5-cm long EO APLN filter with a 15-mrad laser incident angle and without a temperature gradient in the crystal. The upper left inset illustrates the laser-incidence geometry. Red curve: Calculated output spectrum of the 5- cm long EO APLN filter with a temperature gradient of -0.1°/cm decreased from the center to both ends of the crystal. The upper-right inset illustrates the temperature gradient in the device. (b) The calculated (red solid curve) and measured (black dotted curve) output spectra of a 1-cm long EO APLN filter, showing a great improvement in the spectral agreement.

Fig. 4.
Fig. 4.

Measured spectral tuning as a function of temperature for the 8 transmitted wavelengths of the 5-cm long EO APLN filter. The tuning rate is about 0.65 nm/°C.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d d x A o ( x ) = i κ ( x ) A e ( x ) e i Δ β x ,
d d x A e ( x ) = i κ * ( x ) A o ( x ) e i Δ β x ,
κ ( x ) = π λ 0 ( n o n e ) 3 2 r 51 E y s ( x ) .
A o ( x j + 1 ) = e i Δ β 2 x j + 1 { P 1 ( x j ) cos r x j + 1 + P 2 ( x j ) sin r x j + 1 } ,
A e ( x j + 1 ) = e i Δ β 2 x j + 1 { P 1 ( x j ) [ Δ β 2 κ ( x j + 1 ) cos r x j + 1 ir κ ( x j + 1 ) sin r x j + 1 ]
+ P 2 ( x j ) [ Δ β 2 κ ( x j + 1 ) sin r x j + 1 + ir κ ( x j + 1 ) cos r x j + 1 ] } ,
T = A e ( x N ) A o ( 0 ) 2 .
Ob = { α = 1 M [ T 0 ( λ α ) T cal ( λ α ) ] w ( λ α ) } + β { max [ T cal ( λ α ) ] min [ T cal ( λ α ) ] } ,
δ ϕ 1 % = 2 0.6296 π n e n o l c L cos ϕ ,

Metrics