Abstract

The expression of optical forces provoked by an incident light illuminating particles can be deduced from the Lorentz law. It is shown that these forces derive from a scalar potential in the 2D problem and s-polarization, with light propagating in the cross-section plane of the particles, a fact which shows that the separation between gradient and scattering forces could be questioned. This property does not extend to the p-polarization and 3D problem. In the general case, it is shown that one of the components of the optical force is intimately linked with the reactive energy inside the particle. A possible application is given.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997).
    [Crossref] [PubMed]
  3. M. Burns, J-M. Fournier, and J. Golovshenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [Crossref] [PubMed]
  4. M. Burns, J-M. Fournier, and J. Golovshenko, “Lateral binding effect, due to particle’s optical interaction,” Science 289, 749–754 (1990).
    [Crossref]
  5. J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
    [Crossref]
  6. W. Singer, M. Frick M, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20, 1568–1574 (2003).
    [Crossref]
  7. S. Tatarkova, A. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901 (2002).
    [Crossref]
  8. N. Metzger, K. Dholakia, and E. Wright, “Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres,” Phys. Rev. Lett. 96, 068102 (2006).
    [Crossref] [PubMed]
  9. C. Mellor and C. Bain Chem., “Array Formation in Evanescent Waves,” Phys. Chem. 7, 329–332 (2006).
    [Crossref]
  10. N. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14, 3677–3687 (2006).
    [Crossref] [PubMed]
  11. P. Chaumet and M. Nieto-Vesperinas, “Time averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
    [Crossref]
  12. T. Grzegorczyk, B. Kemp, and J. Kong, “Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field,” J. Opt. Soc. Am. A 23, 2324–2330 (2006).
    [Crossref]
  13. T. Grzegorczyk, B. Kemp, and J. Kong, “Stable optical trapping based on optical binding forces, “Phys. Rev. Lett. 96, 113903 (2006).
    [Crossref] [PubMed]
  14. M. Povinelli, S. Johnson, M. Lonèar, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13, 8286–8295 (2005).
    [Crossref] [PubMed]
  15. D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, “Optically bound microscopic particles in one. dimension,” Phys. Rev. E 69, 021403 (2004).
    [Crossref]
  16. A. Rohrbach and E. Stelzer, “Trapping forces and potentials of dielectric spheres in the presence of spherical aberrations,” J. Opt. Soc. Am. A 18, 839–853 (2001).
    [Crossref]
  17. E. Lidorikis, Q. Li, and C. Soukoulis, “Optical Bistability in Colloidal Crystals,” Phys. Rev. E 55, 3613–3618 (1997).
    [Crossref]
  18. M. Antonoyiannakis and J. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60, 2363–2374 (1999).
    [Crossref]
  19. J. Ng, C. Chan, Z. Sheng, and Lin, “Strong optical force induced by morphology-dependent resonances,” Opt. Lett. 30, 1956–1958 (2005).
    [Crossref] [PubMed]
  20. D. Maystre and P. Vincent, “Making photonic crystals using trapping and binding optical forces on particles,” J. Opt. A: Pure Appl. Opt. 8, 1059–1066 (2006).
    [Crossref]
  21. D. Maystre and P. Vincent, “Phenomenological study of binding in optically trapped photonic crystals,” submitted to the J. Opt. Soc. Am. A.
  22. M. Tomasz, Jin Grzegorczyk, and Au Kong, “Analytical expression of the force due to multiple TM plane wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size,” to be published in the J. Opt. Soc. Am. B.
  23. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004).
    [Crossref] [PubMed]
  24. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Radiation pressure and the distribution of electromagnetic force in a dielectric media,” Opt. Express 13, 2321–2336 (2005).
    [Crossref] [PubMed]
  25. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13, 9280–9291 (2005).
    [Crossref] [PubMed]
  26. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing Mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
    [Crossref] [PubMed]
  27. L. Novotny and B. Hecht, “Principles of Nano-Optics,” (Cambridge University Press, Cambridge) (2006).
  28. J D Jackson Classical Electrodynamics, 2nd edition (New-York-Wiley) (1975).
  29. J.A. Kong, Maxwell Equations (EMW Publishing: Cambridge, MA) (2002).
  30. J. Van Bladel Electromagnetic Fields (Mc Graw-Hill: New York) (1964).
  31. Ch. Imbert, “Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam,” Phys. Rev. D 5, 787–796 (1972).
    [Crossref]
  32. B.T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  33. D. Maystre, “Getting effective permittivity and permeability equal to -1 in 1D dielectric photonic crystals,” J. Mod. Opt. 53, 1901–1917 (2006).
    [Crossref]
  34. J. P. Gordon, “Radiation Forces and Momenta in Dielectric Media,” Phys. Rev. A 8, 14–21 (1973).
    [Crossref]
  35. Y. N. Obukhov and F. W. Hehl, “Electromagnetic energy-momentum and forces in matter,” Phys. Lett. A 311, 277–284 (2003).
    [Crossref]
  36. R. Loudon, “Theory of the radiation pressure on dielectric surfaces,” J. Mod. Opt. 49, 812–836 (2002).
    [Crossref]
  37. R. Loudon, S. M. Barnett, and C. Baxter, “Radiation pressure and momentum transfer in dielectrics: the photon drag effect,” Phys. Rev. A 71, 063802 (2005).
    [Crossref]
  38. C. Raabe and D. G. Welsch, “Casimir force acting on magnetodielectric bodies embedded in media,” Phys. Rev. A 71, 013814 (2005).
    [Crossref]
  39. L. P. Pitaevskii, “Why and when the Minkowski’s stress tensor can be used in the problem of Casimir force acting on bodies embedded in media,” Cond-mat, 0505754 (2005).

2006 (8)

N. Metzger, K. Dholakia, and E. Wright, “Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres,” Phys. Rev. Lett. 96, 068102 (2006).
[Crossref] [PubMed]

C. Mellor and C. Bain Chem., “Array Formation in Evanescent Waves,” Phys. Chem. 7, 329–332 (2006).
[Crossref]

N. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14, 3677–3687 (2006).
[Crossref] [PubMed]

T. Grzegorczyk, B. Kemp, and J. Kong, “Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field,” J. Opt. Soc. Am. A 23, 2324–2330 (2006).
[Crossref]

T. Grzegorczyk, B. Kemp, and J. Kong, “Stable optical trapping based on optical binding forces, “Phys. Rev. Lett. 96, 113903 (2006).
[Crossref] [PubMed]

D. Maystre and P. Vincent, “Making photonic crystals using trapping and binding optical forces on particles,” J. Opt. A: Pure Appl. Opt. 8, 1059–1066 (2006).
[Crossref]

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing Mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
[Crossref] [PubMed]

D. Maystre, “Getting effective permittivity and permeability equal to -1 in 1D dielectric photonic crystals,” J. Mod. Opt. 53, 1901–1917 (2006).
[Crossref]

2005 (7)

2004 (3)

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, “Optically bound microscopic particles in one. dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004).
[Crossref] [PubMed]

2003 (2)

2002 (2)

S. Tatarkova, A. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901 (2002).
[Crossref]

R. Loudon, “Theory of the radiation pressure on dielectric surfaces,” J. Mod. Opt. 49, 812–836 (2002).
[Crossref]

2001 (1)

2000 (1)

1999 (1)

M. Antonoyiannakis and J. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60, 2363–2374 (1999).
[Crossref]

1997 (2)

E. Lidorikis, Q. Li, and C. Soukoulis, “Optical Bistability in Colloidal Crystals,” Phys. Rev. E 55, 3613–3618 (1997).
[Crossref]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997).
[Crossref] [PubMed]

1990 (1)

M. Burns, J-M. Fournier, and J. Golovshenko, “Lateral binding effect, due to particle’s optical interaction,” Science 289, 749–754 (1990).
[Crossref]

1989 (1)

M. Burns, J-M. Fournier, and J. Golovshenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref] [PubMed]

1988 (1)

B.T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1973 (1)

J. P. Gordon, “Radiation Forces and Momenta in Dielectric Media,” Phys. Rev. A 8, 14–21 (1973).
[Crossref]

1972 (1)

Ch. Imbert, “Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Antonoyiannakis, M.

M. Antonoyiannakis and J. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60, 2363–2374 (1999).
[Crossref]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Au Kong,

M. Tomasz, Jin Grzegorczyk, and Au Kong, “Analytical expression of the force due to multiple TM plane wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size,” to be published in the J. Opt. Soc. Am. B.

Bain Chem., C.

C. Mellor and C. Bain Chem., “Array Formation in Evanescent Waves,” Phys. Chem. 7, 329–332 (2006).
[Crossref]

Barnett, S. M.

R. Loudon, S. M. Barnett, and C. Baxter, “Radiation pressure and momentum transfer in dielectrics: the photon drag effect,” Phys. Rev. A 71, 063802 (2005).
[Crossref]

Baxter, C.

R. Loudon, S. M. Barnett, and C. Baxter, “Radiation pressure and momentum transfer in dielectrics: the photon drag effect,” Phys. Rev. A 71, 063802 (2005).
[Crossref]

Bernet, S.

Boer, G.

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

Burns, M.

M. Burns, J-M. Fournier, and J. Golovshenko, “Lateral binding effect, due to particle’s optical interaction,” Science 289, 749–754 (1990).
[Crossref]

M. Burns, J-M. Fournier, and J. Golovshenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref] [PubMed]

Capasso, F.

Carruthers, A.

D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, “Optically bound microscopic particles in one. dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

S. Tatarkova, A. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901 (2002).
[Crossref]

Chan, C.

Chaumet, P.

Delacrétaz, G.

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

Dholakia, K.

N. Metzger, K. Dholakia, and E. Wright, “Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres,” Phys. Rev. Lett. 96, 068102 (2006).
[Crossref] [PubMed]

N. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14, 3677–3687 (2006).
[Crossref] [PubMed]

D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, “Optically bound microscopic particles in one. dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

S. Tatarkova, A. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901 (2002).
[Crossref]

Draine, B.T.

B.T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Fournier, J-M.

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

M. Burns, J-M. Fournier, and J. Golovshenko, “Lateral binding effect, due to particle’s optical interaction,” Science 289, 749–754 (1990).
[Crossref]

M. Burns, J-M. Fournier, and J. Golovshenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref] [PubMed]

Frick M, M.

Golovshenko, J.

M. Burns, J-M. Fournier, and J. Golovshenko, “Lateral binding effect, due to particle’s optical interaction,” Science 289, 749–754 (1990).
[Crossref]

M. Burns, J-M. Fournier, and J. Golovshenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref] [PubMed]

Gordon, J. P.

J. P. Gordon, “Radiation Forces and Momenta in Dielectric Media,” Phys. Rev. A 8, 14–21 (1973).
[Crossref]

Grzegorczyk, Jin

M. Tomasz, Jin Grzegorczyk, and Au Kong, “Analytical expression of the force due to multiple TM plane wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size,” to be published in the J. Opt. Soc. Am. B.

Grzegorczyk, T.

Grzegorczyk, T. M.

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing Mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
[Crossref] [PubMed]

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13, 9280–9291 (2005).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, “Principles of Nano-Optics,” (Cambridge University Press, Cambridge) (2006).

Hehl, F. W.

Y. N. Obukhov and F. W. Hehl, “Electromagnetic energy-momentum and forces in matter,” Phys. Lett. A 311, 277–284 (2003).
[Crossref]

Ibanescu, M.

Imbert, Ch.

Ch. Imbert, “Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

Jackson, J D

J D Jackson Classical Electrodynamics, 2nd edition (New-York-Wiley) (1975).

Jacquot, P.

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

Joannopoulos, J.

Johnson, S.

Kemp, B.

Kemp, B. A.

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing Mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
[Crossref] [PubMed]

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13, 9280–9291 (2005).
[Crossref] [PubMed]

Kong, J.

Kong, J. A.

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing Mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
[Crossref] [PubMed]

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13, 9280–9291 (2005).
[Crossref] [PubMed]

Kong, J.A.

J.A. Kong, Maxwell Equations (EMW Publishing: Cambridge, MA) (2002).

Li, Q.

E. Lidorikis, Q. Li, and C. Soukoulis, “Optical Bistability in Colloidal Crystals,” Phys. Rev. E 55, 3613–3618 (1997).
[Crossref]

Lidorikis, E.

E. Lidorikis, Q. Li, and C. Soukoulis, “Optical Bistability in Colloidal Crystals,” Phys. Rev. E 55, 3613–3618 (1997).
[Crossref]

Lin,

Lonèar, M.

Loudon, R.

R. Loudon, S. M. Barnett, and C. Baxter, “Radiation pressure and momentum transfer in dielectrics: the photon drag effect,” Phys. Rev. A 71, 063802 (2005).
[Crossref]

R. Loudon, “Theory of the radiation pressure on dielectric surfaces,” J. Mod. Opt. 49, 812–836 (2002).
[Crossref]

Mansuripur, M.

Maystre, D.

D. Maystre and P. Vincent, “Making photonic crystals using trapping and binding optical forces on particles,” J. Opt. A: Pure Appl. Opt. 8, 1059–1066 (2006).
[Crossref]

D. Maystre, “Getting effective permittivity and permeability equal to -1 in 1D dielectric photonic crystals,” J. Mod. Opt. 53, 1901–1917 (2006).
[Crossref]

D. Maystre and P. Vincent, “Phenomenological study of binding in optically trapped photonic crystals,” submitted to the J. Opt. Soc. Am. A.

McGloin, D.

D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, “Optically bound microscopic particles in one. dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

Mellor, C.

C. Mellor and C. Bain Chem., “Array Formation in Evanescent Waves,” Phys. Chem. 7, 329–332 (2006).
[Crossref]

Metzger, N.

N. Metzger, K. Dholakia, and E. Wright, “Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres,” Phys. Rev. Lett. 96, 068102 (2006).
[Crossref] [PubMed]

N. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14, 3677–3687 (2006).
[Crossref] [PubMed]

Moloney, J. V.

Ng, J.

Nieto-Vesperinas, M.

Novotny, L.

L. Novotny and B. Hecht, “Principles of Nano-Optics,” (Cambridge University Press, Cambridge) (2006).

Obukhov, Y. N.

Y. N. Obukhov and F. W. Hehl, “Electromagnetic energy-momentum and forces in matter,” Phys. Lett. A 311, 277–284 (2003).
[Crossref]

Pendry, J.

M. Antonoyiannakis and J. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60, 2363–2374 (1999).
[Crossref]

Pitaevskii, L. P.

L. P. Pitaevskii, “Why and when the Minkowski’s stress tensor can be used in the problem of Casimir force acting on bodies embedded in media,” Cond-mat, 0505754 (2005).

Povinelli, M.

Raabe, C.

C. Raabe and D. G. Welsch, “Casimir force acting on magnetodielectric bodies embedded in media,” Phys. Rev. A 71, 013814 (2005).
[Crossref]

Ritsch-Marte, M.

Rohner, J.

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

Rohrbach, A.

Salathé, R.

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

Sheng, Z.

Sibbett, W.

Singer, W.

Smythe, E.

Soukoulis, C.

E. Lidorikis, Q. Li, and C. Soukoulis, “Optical Bistability in Colloidal Crystals,” Phys. Rev. E 55, 3613–3618 (1997).
[Crossref]

Stelzer, E.

Tatarkova, S.

S. Tatarkova, A. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901 (2002).
[Crossref]

Tomasz, M.

M. Tomasz, Jin Grzegorczyk, and Au Kong, “Analytical expression of the force due to multiple TM plane wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size,” to be published in the J. Opt. Soc. Am. B.

Van Bladel, J.

J. Van Bladel Electromagnetic Fields (Mc Graw-Hill: New York) (1964).

Vincent, P.

D. Maystre and P. Vincent, “Making photonic crystals using trapping and binding optical forces on particles,” J. Opt. A: Pure Appl. Opt. 8, 1059–1066 (2006).
[Crossref]

D. Maystre and P. Vincent, “Phenomenological study of binding in optically trapped photonic crystals,” submitted to the J. Opt. Soc. Am. A.

Welsch, D. G.

C. Raabe and D. G. Welsch, “Casimir force acting on magnetodielectric bodies embedded in media,” Phys. Rev. A 71, 013814 (2005).
[Crossref]

Wright, E.

N. Metzger, K. Dholakia, and E. Wright, “Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres,” Phys. Rev. Lett. 96, 068102 (2006).
[Crossref] [PubMed]

N. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14, 3677–3687 (2006).
[Crossref] [PubMed]

D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, “Optically bound microscopic particles in one. dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

Zakharian, A. R.

Astrophys. J. (1)

B.T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

J. Mod. Opt. (2)

D. Maystre, “Getting effective permittivity and permeability equal to -1 in 1D dielectric photonic crystals,” J. Mod. Opt. 53, 1901–1917 (2006).
[Crossref]

R. Loudon, “Theory of the radiation pressure on dielectric surfaces,” J. Mod. Opt. 49, 812–836 (2002).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

D. Maystre and P. Vincent, “Making photonic crystals using trapping and binding optical forces on particles,” J. Opt. A: Pure Appl. Opt. 8, 1059–1066 (2006).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Phys. Chem. (1)

C. Mellor and C. Bain Chem., “Array Formation in Evanescent Waves,” Phys. Chem. 7, 329–332 (2006).
[Crossref]

Phys. Lett. A (1)

Y. N. Obukhov and F. W. Hehl, “Electromagnetic energy-momentum and forces in matter,” Phys. Lett. A 311, 277–284 (2003).
[Crossref]

Phys. Rev. A (3)

J. P. Gordon, “Radiation Forces and Momenta in Dielectric Media,” Phys. Rev. A 8, 14–21 (1973).
[Crossref]

R. Loudon, S. M. Barnett, and C. Baxter, “Radiation pressure and momentum transfer in dielectrics: the photon drag effect,” Phys. Rev. A 71, 063802 (2005).
[Crossref]

C. Raabe and D. G. Welsch, “Casimir force acting on magnetodielectric bodies embedded in media,” Phys. Rev. A 71, 013814 (2005).
[Crossref]

Phys. Rev. B (1)

M. Antonoyiannakis and J. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60, 2363–2374 (1999).
[Crossref]

Phys. Rev. D (1)

Ch. Imbert, “Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

Phys. Rev. E (2)

D. McGloin, A. Carruthers, K. Dholakia, and E. Wright, “Optically bound microscopic particles in one. dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

E. Lidorikis, Q. Li, and C. Soukoulis, “Optical Bistability in Colloidal Crystals,” Phys. Rev. E 55, 3613–3618 (1997).
[Crossref]

Phys. Rev. Lett. (6)

T. Grzegorczyk, B. Kemp, and J. Kong, “Stable optical trapping based on optical binding forces, “Phys. Rev. Lett. 96, 113903 (2006).
[Crossref] [PubMed]

S. Tatarkova, A. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901 (2002).
[Crossref]

N. Metzger, K. Dholakia, and E. Wright, “Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres,” Phys. Rev. Lett. 96, 068102 (2006).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

M. Burns, J-M. Fournier, and J. Golovshenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref] [PubMed]

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing Mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997).
[Crossref] [PubMed]

Proc. SPIE (1)

J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building Optical Matter with Binding and Trapping Forces,” Proc. SPIE 5514, 309–317 (2004).
[Crossref]

Science (1)

M. Burns, J-M. Fournier, and J. Golovshenko, “Lateral binding effect, due to particle’s optical interaction,” Science 289, 749–754 (1990).
[Crossref]

Other (7)

L. Novotny and B. Hecht, “Principles of Nano-Optics,” (Cambridge University Press, Cambridge) (2006).

J D Jackson Classical Electrodynamics, 2nd edition (New-York-Wiley) (1975).

J.A. Kong, Maxwell Equations (EMW Publishing: Cambridge, MA) (2002).

J. Van Bladel Electromagnetic Fields (Mc Graw-Hill: New York) (1964).

D. Maystre and P. Vincent, “Phenomenological study of binding in optically trapped photonic crystals,” submitted to the J. Opt. Soc. Am. A.

M. Tomasz, Jin Grzegorczyk, and Au Kong, “Analytical expression of the force due to multiple TM plane wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size,” to be published in the J. Opt. Soc. Am. B.

L. P. Pitaevskii, “Why and when the Minkowski’s stress tensor can be used in the problem of Casimir force acting on bodies embedded in media,” Cond-mat, 0505754 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1
Fig.1

Notations

Fig.2.
Fig.2.

he dielectric slab

Fig. 3.
Fig. 3.

Square modulus of the field (SI) at the boundary of a circular cylinder illuminated by a plane wave

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

× E i ω μ 0 H = 0
× H + i ω ε E = 0
× H + i ω ε 0 E = i ω ( ε 0 ε ) E
× H + i ω ε 0 E = j
j = i ω ( ε 0 ε ) E
. j = i ω ρ
ρ = ε 0 . E
f M V = μ 0 2 Re { j × H * }
= ω ( ε ε 0 ) μ 0 2 Im { E × H * }
f E V = 1 2 Re { ρ E * } = ε 0 2 Re { E * . E }
f M = ω μ 0 ( ε r ε 0 ) 2 Ω Im { E × H * } d V
E = E t + n E n
f E , t * = ε 0 2 Re { E t * . E }
. E = n . [ E ] δ Ω
all space u δ Ω d V = Ω u ( M ) d S
f E , t = all space ε 0 2 Re { E t * ( n . [ E ] ) } δ Ω d V = ε 0 2 Ω Re { [ E n ] E t * } d s
ε 0 E n out = ε r E n in
f E , t = ( ε r ε 0 ) 2 Ω Re { E n in E t * } d S
f E , n V = ε 0 2 Re { n E n * . ( E t + n E n ) }
f E , n V = ε 0 2 Re { n E n * . ( n E n ) }
f E , n V = ε 0 2 Re { n ( ε E n * ) 1 ε . ( n ε E n ε ) }
f E , n V = ε 0 2 Re { n ( ε E n * ) [ 1 ε ( 1 ε ) . n ε E n ] }
= ε 0 4 Re { n ( ε E n * ) [ ( 1 ε 2 ) . n ε E n ] }
( 1 ε 2 ) ( 1 ε 0 2 1 ε r 2 ) n δ Ω
f E , n V = ε 0 ε r 2 4 ( 1 ε 0 2 1 ε r 2 ) E n in 2 . n δ Ω
= ε 0 4 ( ε r 2 ε 0 2 1 ) E n in 2 n δ Ω
f E , n = ε 0 4 ( ε r 2 ε 0 2 1 ) Ω E n in 2 n d s
f E , n = ε 0 4 Ω ( ε r ε 0 + 1 ) n E n * in ( ε r ε 0 1 ) E n in d s
f E , n = 1 2 Ω n E n * ε 0 ( E n out E n in ) d s
f E , n = 1 2 Ω n E n * σ d s
f = f M + f E , t + f E , n = ω μ 0 ( ε r ε 0 ) 2 Ω Im { E × H * } d V
+ ( ε r ε 0 ) 2 Ω Re { E n in E t * } d s + ( ε r 2 ε 0 2 4 ε 0 ) Ω E n in 2 n d s
E xy = i ω ε r z ̂ × H z
H xy = i ω μ 0 z ̂ × E z
f = f xy + z ̂ f z
f xy = Ω UdV + ( ε r ε 0 ) 2 Ω Re { E n in E t , xy * } d s
+ ( ε r s ε 0 2 4 ε 0 ) Ω E n in 2 n d S
U = 1 4 ( 1 ε 0 ε r ) ( μ 0 H z 2 ε r E z 2 )
f z = 1 2 ω ( ε r ε 0 ε r ) Ω Im [ z ̂ . ( H z × E z * ) ] d V
+ ( ε r ε 0 ) 2 Ω Re { E n in E z * } d S
f xy = Ω U n d S + ( ε r ε 0 ) 2 Ω Re { E n in E t , xy * } d S
+ ( ε r 2 ε 0 2 4 ε 0 ) Ω E n in 2 n d S
b = ρ a
ρ = v r 1 v r + 1
E z = a [ exp ( i k 0 v r y ) + ρ exp ( + i k 0 v r y ) ]
E z 2 = E 2 = a 2 exp ( i k 0 v r y ) + ρ exp ( + i k 0 v r y ) 2
= a 2 1 + ρ exp ( + 2 i k 0 v r y ) 2
y = p λ 0 2 v r , p = 0 , 1 , 2 ,
J = Ω U n d S
J = ε r ε 0 4 Ω R cos ( θ ) E z 2 d θ
Φ = 1 2 Ω n . ( E × H * ) d S
Φ = 1 2 Ω . ( E × H * ) d V
= 1 2 Ω ( H * . × E E . × H * ) d V
Φ = 2 i ω Ω ( μ 0 4 H 2 ε r 4 E 2 ) d V = 2 i ω Ω ( W M W E ) d V

Metrics