Abstract

We present a novel generic approach for pulsed light generation in the visible spectrum. We demonstrate how the circulating field of a high finesse laser can be efficiently cavity dumped through sum-frequency mixing with externally injected high peak power single pass pulses. Periodically poled KTP is used as the nonlinear medium to minimize the peak power requirement of the injected beam. The experimental setup consists of a high finesse 1342 nm Nd:YVO4 laser cavity and a passively Q-switched Nd:YAG laser. Yellow pulses at 593 nm are generated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Herault, F. Balembois, and P. Georges, "491 nm generation by sum-frequency mixing of diode pumped neodymium lasers," Opt. Express 13, 5653-5661 (2005).
    [CrossRef] [PubMed]
  2. S. Johansson, S. Wang, V. Pasiskevicius, and F. Laurell, "Compact 492-nm light source based on sum-frequency mixing," Opt. Express 13, 2590-2595 (2005).
    [CrossRef] [PubMed]
  3. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. Mortensen, P. Buchhave, and F. Laurell, "Efficient all solid-state continuous-wave yellow-orange light source," Opt. Express 13, 1188-1192 (2005).
    [CrossRef] [PubMed]
  4. Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing, " Opt. Lett. 27, 397-399 (2002).
    [CrossRef]
  5. Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP," Appl. Phys. B. 79, 207 (2004).
    [CrossRef]
  6. R. Mildren, M. Convery, H. Pask, J. Piper, and T. Mckay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004).
    [CrossRef] [PubMed]
  7. H. M. Pask and J. A. Piper, "Efficientall-solid-state yellow laser source producing 1.2-W average power," Opt. Lett. 24, 1490-1492 (1999).
    [CrossRef]
  8. Z. G. Figen and O. Aytür, "Nanosecond sum-frequency generating optical parametric oscillator using simultaneous phase matching," Opt. Express 13, 4896-4902 (2005).
    [CrossRef] [PubMed]
  9. H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
    [CrossRef]
  10. H. Statz, G.A. Mars, D.T. Wilson, "Problem of Spike Elimination in Lasers," J. Appl. Phys. 36, 1510-1514 (1965).
    [CrossRef]

2005 (4)

2004 (3)

Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP," Appl. Phys. B. 79, 207 (2004).
[CrossRef]

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

R. Mildren, M. Convery, H. Pask, J. Piper, and T. Mckay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004).
[CrossRef] [PubMed]

2002 (1)

1999 (1)

1965 (1)

H. Statz, G.A. Mars, D.T. Wilson, "Problem of Spike Elimination in Lasers," J. Appl. Phys. 36, 1510-1514 (1965).
[CrossRef]

Aytür, O.

Balembois, F.

Buchhave, P.

Chen, Y. F.

Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP," Appl. Phys. B. 79, 207 (2004).
[CrossRef]

Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing, " Opt. Lett. 27, 397-399 (2002).
[CrossRef]

Convery, M.

Fan, Y.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Figen, Z. G.

Gao, Z.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Georges, P.

He, J.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Herault, E.

Janousek, J.

Johansson, S.

Laurell, F.

Li, H.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Liu, S.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Lu, P.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Mars, G.A.

H. Statz, G.A. Mars, D.T. Wilson, "Problem of Spike Elimination in Lasers," J. Appl. Phys. 36, 1510-1514 (1965).
[CrossRef]

Mckay, T.

Mildren, R.

Mortensen, J.

Pasiskevicius, V.

Pask, H.

Pask, H. M.

Piper, J.

Piper, J. A.

Statz, H.

H. Statz, G.A. Mars, D.T. Wilson, "Problem of Spike Elimination in Lasers," J. Appl. Phys. 36, 1510-1514 (1965).
[CrossRef]

Tidemand-Lichtenberg, P.

Tsai, S. W.

Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP," Appl. Phys. B. 79, 207 (2004).
[CrossRef]

Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing, " Opt. Lett. 27, 397-399 (2002).
[CrossRef]

Wang, S.

Wilson, D.T.

H. Statz, G.A. Mars, D.T. Wilson, "Problem of Spike Elimination in Lasers," J. Appl. Phys. 36, 1510-1514 (1965).
[CrossRef]

Xu, P.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Zhu, S.

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Appl. Phys. B. (1)

Y. F. Chen and S. W. Tsai, "Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP," Appl. Phys. B. 79, 207 (2004).
[CrossRef]

J. Appl. Phys. (1)

H. Statz, G.A. Mars, D.T. Wilson, "Problem of Spike Elimination in Lasers," J. Appl. Phys. 36, 1510-1514 (1965).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. Li, P. Xu, Y. Fan, P. Lu, Z. Gao, S. Liu, S. Zhu and J. He, "All-solid-state red and green laser by temperature tuning," J. Phys. D: Appl. Phys. 37L21-L24 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic setup of the suggested generic approach for generation of visible laser pulses.

Fig. 2.
Fig. 2.

Measured operation of the Q-switched 1064 nm laser. Left graph shows the pulse repetition rate as a function of diode pump current. Right graph shows a typical trace of a single pulse and multiple pulses at a diode pump current of 3.5 A, using the 80 % Cr:YAG saturable absorber.

Fig. 3.
Fig. 3.

Measured power from the 1342 nm laser when a high peak power 1064 nm pulse is single passed through the intracavity nonlinear material. Right graph shows the average yellow power as a function of diode pump current for the 1064 nm laser.

Fig. 4.
Fig. 4.

Measured power of the three interacting fields at 1342 (Black curve), 1064 (Red curve) and 593 nm (Green curve). In the left graph the 1064 nm peak power has been attenuated to 6 W of peak power. In the right graph the 1064 nm peak power at the position of the nonlinear crystal was attenuated to 2.4 kW

Fig. 5.
Fig. 5.

Measured power of the three interacting fields at 1342 (Black curve), 1064 (Red curve) and 593 nm (Green curve) at a 1064 nm peak power of 6 kW (left). The secondary peak on the green trace is residual 1064 nm pulse reaching the detector for the yellow light. The graph to the right shows saturation of the 593 nm peak power as a function of 1064 nm peak power.

Metrics