Abstract

The majority of photons emitted in organic light-emitting diodes are either trapped in the substrate or emitted into lossy waveguided modes. We show how optimized, non-periodic dielectric stacks inserted between the substrate and transparent anode can be used to improve the photon outcoupling efficiency by tailoring of the local photon density of states. Unlike previously demonstrated outcoupling schemes, this method does not lead to pixel blurring and maintains a Lambertian angular emission profiles within a specified cone. For small molecular weight, green-emitting devices, a 2.5-fold uniformly distributed increase in brightness is achievable for a viewing angle of 60°.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
    [CrossRef]
  2. P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
    [CrossRef]
  3. C. F. Madigan, M. H. Lu and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,"Appl. Phys. Lett. 76, 1650-1652 (2000).
    [CrossRef]
  4. S. Moller and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
    [CrossRef]
  5. T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
    [CrossRef]
  6. L. H. Smith, J. A. Wasey, W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes, " Appl. Phys. Lett. 84, 2986-2988 (2004).
    [CrossRef]
  7. T. Nakayama, Y. Itoh and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
    [CrossRef]
  8. T. Tsutsui, N. Takada and Shogo Saito, "Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994).
    [CrossRef]
  9. S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997)
    [CrossRef]
  10. J. Vuckovic, M. Loncar and A. Scherer, "Surface plasmon enhanced light-emitting diodes," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
    [CrossRef]
  11. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
    [CrossRef]
  12. M. J Cox, Visual ergonomics, (University of Bradford 1999).
  13. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
    [CrossRef]
  14. R. R. Chance, A. Prock and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
    [CrossRef]
  15. E. A. Hinds, ‘‘Perturbative cavity quantum electrodynamics,’’ in Cavity Quantum Electrodynamics, P. R. Berman, ed., (Academic, New York, 1994).
  16. R. J. Glauber and M. L. Lewenstein, ‘‘Quantum optics of dielectric media,’’Phys. Rev. A 43, 467-491 (1991).
    [CrossRef] [PubMed]
  17. Y. Xu, J. S. Vuckovic, R. K. Lee, O. J. Painter, A. Scherer, and A Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B,  16, 465-474 (1999).
    [CrossRef]
  18. A. V. Tikhonravov, "Some theoretical aspects of thin-film optics and their applications," Appl. Opt. 32, 5417-5426 (1993).
    [CrossRef] [PubMed]
  19. K. V. Popov, J. A. Dobrowolski, A. V. Tikhonravov and B. T. Sullivan, "Broadband high-reflection multilayer coatings at oblique angles of incidence," Appl. Opt. 36, 2139-2151 (1997).
    [CrossRef] [PubMed]
  20. N. Matuschek, FranzX. Kartner and Ursula Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-208 (1998).
    [CrossRef]
  21. M. Gerken and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," Photonic Technol Lett. 15, 1097-1099 (2003).
    [CrossRef]
  22. B. T. Sullivan and J. A. Dobrowolski, "Implementation of a numerical needle method for thin-film design," Appl. Opt. 35, 5484-5492 (1996).
    [CrossRef] [PubMed]
  23. A. V. Tikhonravov, M. K. Trubetskov and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef] [PubMed]
  24. J. A. Nelder and R. Mead, "A simplex method for function minimization," Comput. J. 7, 308-313 (1965).
  25. M. Deopura, C. K. Ullal, B. Temelkuran, and Y Fink," Dielectric omnidirectional visible reflector," Opt. Lett. 26, 1197-1199 (2001).
    [CrossRef]
  26. E. D. Palik, ed., Handbook of optical constants of solids (Academic, Boston 1999).
  27. P. A. Lee, G. Said, R. Davis and T. H. Lim, "On the optical properties of some layer compounds," J. Phys. Chem. Solids 30, 2719-2729 (1969).
    [CrossRef]
  28. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
    [CrossRef]

2004 (1)

L. H. Smith, J. A. Wasey, W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes, " Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

2003 (1)

M. Gerken and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," Photonic Technol Lett. 15, 1097-1099 (2003).
[CrossRef]

2002 (2)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

S. Moller and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

2001 (3)

T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
[CrossRef]

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

M. Deopura, C. K. Ullal, B. Temelkuran, and Y Fink," Dielectric omnidirectional visible reflector," Opt. Lett. 26, 1197-1199 (2001).
[CrossRef]

2000 (2)

C. F. Madigan, M. H. Lu and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,"Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

J. Vuckovic, M. Loncar and A. Scherer, "Surface plasmon enhanced light-emitting diodes," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

1999 (2)

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
[CrossRef]

Y. Xu, J. S. Vuckovic, R. K. Lee, O. J. Painter, A. Scherer, and A Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B,  16, 465-474 (1999).
[CrossRef]

1998 (1)

N. Matuschek, FranzX. Kartner and Ursula Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-208 (1998).
[CrossRef]

N. Matuschek, FranzX. Kartner and Ursula Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-208 (1998).
[CrossRef]

1997 (2)

S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997)
[CrossRef]

K. V. Popov, J. A. Dobrowolski, A. V. Tikhonravov and B. T. Sullivan, "Broadband high-reflection multilayer coatings at oblique angles of incidence," Appl. Opt. 36, 2139-2151 (1997).
[CrossRef] [PubMed]

1996 (3)

1994 (1)

T. Tsutsui, N. Takada and Shogo Saito, "Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

1993 (2)

T. Nakayama, Y. Itoh and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

A. V. Tikhonravov, "Some theoretical aspects of thin-film optics and their applications," Appl. Opt. 32, 5417-5426 (1993).
[CrossRef] [PubMed]

1991 (1)

R. J. Glauber and M. L. Lewenstein, ‘‘Quantum optics of dielectric media,’’Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

1984 (1)

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

1969 (1)

P. A. Lee, G. Said, R. Davis and T. H. Lim, "On the optical properties of some layer compounds," J. Phys. Chem. Solids 30, 2719-2729 (1969).
[CrossRef]

1965 (1)

J. A. Nelder and R. Mead, "A simplex method for function minimization," Comput. J. 7, 308-313 (1965).

Baldo, M. A.

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
[CrossRef]

Barnes, W. L.

L. H. Smith, J. A. Wasey, W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes, " Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

Burrows, P. E.

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Davis, R.

P. A. Lee, G. Said, R. Davis and T. H. Lim, "On the optical properties of some layer compounds," J. Phys. Chem. Solids 30, 2719-2729 (1969).
[CrossRef]

DeBell, G. W.

Deopura, M.

Dobrowolski, J. A.

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Fan, S.

S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997)
[CrossRef]

Fink, Y

Ford, G. W.

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Forrest, S. R.

S. Moller and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
[CrossRef]

Franz, N.

N. Matuschek, FranzX. Kartner and Ursula Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-208 (1998).
[CrossRef]

Gerken, M.

M. Gerken and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," Photonic Technol Lett. 15, 1097-1099 (2003).
[CrossRef]

Glauber, R. J.

R. J. Glauber and M. L. Lewenstein, ‘‘Quantum optics of dielectric media,’’Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

Itoh, Y.

T. Nakayama, Y. Itoh and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997)
[CrossRef]

Jordan, R. H.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Julia, R. E.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Kakuta, A.

T. Nakayama, Y. Itoh and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

Kawano, K.

T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
[CrossRef]

Lamansky, S.

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
[CrossRef]

Lee, P. A.

P. A. Lee, G. Said, R. Davis and T. H. Lim, "On the optical properties of some layer compounds," J. Phys. Chem. Solids 30, 2719-2729 (1969).
[CrossRef]

Lee, R. K.

Lewenstein, M. L.

R. J. Glauber and M. L. Lewenstein, ‘‘Quantum optics of dielectric media,’’Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

Lim, T. H.

P. A. Lee, G. Said, R. Davis and T. H. Lim, "On the optical properties of some layer compounds," J. Phys. Chem. Solids 30, 2719-2729 (1969).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar and A. Scherer, "Surface plasmon enhanced light-emitting diodes," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Lu, M. H.

C. F. Madigan, M. H. Lu and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,"Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Madigan, C. F.

C. F. Madigan, M. H. Lu and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,"Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Matuschek, N.

N. Matuschek, FranzX. Kartner and Ursula Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-208 (1998).
[CrossRef]

Mead, R.

J. A. Nelder and R. Mead, "A simplex method for function minimization," Comput. J. 7, 308-313 (1965).

Miller, D. A. B.

M. Gerken and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," Photonic Technol Lett. 15, 1097-1099 (2003).
[CrossRef]

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Moller, S.

S. Moller and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Nakayama, T.

T. Nakayama, Y. Itoh and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

Nelder, J. A.

J. A. Nelder and R. Mead, "A simplex method for function minimization," Comput. J. 7, 308-313 (1965).

Painter, O. J.

Popov, K. V.

Prock, A.

R. R. Chance, A. Prock and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

Said, G.

P. A. Lee, G. Said, R. Davis and T. H. Lim, "On the optical properties of some layer compounds," J. Phys. Chem. Solids 30, 2719-2729 (1969).
[CrossRef]

Saito, Shogo

T. Tsutsui, N. Takada and Shogo Saito, "Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

Scherer, A.

Silbey, R.

R. R. Chance, A. Prock and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Slusher, R. E.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Smith, L. H.

L. H. Smith, J. A. Wasey, W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes, " Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

Sturm, J. C.

C. F. Madigan, M. H. Lu and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,"Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Sullivan, B. T.

Takada, N.

T. Tsutsui, N. Takada and Shogo Saito, "Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

Temelkuran, B.

Thompson, M. E.

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M. K.

Tsutsui, T.

T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
[CrossRef]

T. Tsutsui, N. Takada and Shogo Saito, "Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

Ullal, C. K.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997)
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar and A. Scherer, "Surface plasmon enhanced light-emitting diodes," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Vuckovic, J. S.

Wasey, J. A.

L. H. Smith, J. A. Wasey, W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes, " Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

Worthing, P. T.

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

Xu, Y.

Yariv, A

Yashiro, M.

T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
[CrossRef]

Yokogawa, H.

T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
[CrossRef]

Yokoyama, M.

T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
[CrossRef]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Adv. Mater. (2)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater.,  13, 1149-1152 (2001)
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (6)

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett. 75, 4-6 (1999).
[CrossRef]

L. H. Smith, J. A. Wasey, W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes, " Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

T. Nakayama, Y. Itoh and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

T. Tsutsui, N. Takada and Shogo Saito, "Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure," Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

C. F. Madigan, M. H. Lu and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,"Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Comput. J. (1)

J. A. Nelder and R. Mead, "A simplex method for function minimization," Comput. J. 7, 308-313 (1965).

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar and A. Scherer, "Surface plasmon enhanced light-emitting diodes," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Matuschek, FranzX. Kartner and Ursula Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-208 (1998).
[CrossRef]

J. Appl. Phys. (2)

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and JuliaM. Phillipse, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

S. Moller and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

P. A. Lee, G. Said, R. Davis and T. H. Lim, "On the optical properties of some layer compounds," J. Phys. Chem. Solids 30, 2719-2729 (1969).
[CrossRef]

Opt. Lett. (1)

Photonic Technol Lett. (1)

M. Gerken and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," Photonic Technol Lett. 15, 1097-1099 (2003).
[CrossRef]

Phys. Rep. (1)

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Phys. Rev. A (1)

R. J. Glauber and M. L. Lewenstein, ‘‘Quantum optics of dielectric media,’’Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997)
[CrossRef]

Other (3)

M. J Cox, Visual ergonomics, (University of Bradford 1999).

E. A. Hinds, ‘‘Perturbative cavity quantum electrodynamics,’’ in Cavity Quantum Electrodynamics, P. R. Berman, ed., (Academic, New York, 1994).

E. D. Palik, ed., Handbook of optical constants of solids (Academic, Boston 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

OLED device structure with a non-periodic dielectric stack between the substrate and ITO anode. The various bound and unbound optical modes are identified: unbound modes (UB, kxyc/ω<1), substrate trapped modes (ST, 1<kxyc/ω<1.5), waveguided modes (WG, 1.5<kxyc/ω<1.7) and surface plasmon polariton modes (SPP,kxyc/ω>1.7).

Fig. 2.
Fig. 2.

(a). Spectrally integrated power emitted per unit solid angle vs. azimuthal angle for OLEDs with non-periodic dielectric stacks designs optimized for viewing cones of 20° (A), 60° (B) and 160° (C) (solid lines). The ideal Lambertian target responses (gray lines) and that of the control OLED (dotted line) are also shown (gray lines). (b) Thicknesses of the dielectric layers for the three designs shown in. All three structures have alternate layers of high (n=3.0) and low (n=1.3) index materials. The first layer is in contact with the substrate and is a high index layer in all three designs.

Fig. 3.
Fig. 3.

(a). Fraction of emitted power into UB, ST, WG and SPP modes vs. wavelength for design C (120° viewing cone). (b) Same information as (a) for the control OLED. (c) Spectral power density of emitted radiation the various optical modes design C (120° viewing cone). The spectral power density distribution of the emitter in free space (FS, see text) is also shown. (d) Same information as (c) for the control OLED.

Fig. 4.
Fig. 4.

(a). Relation between targeted viewing cone and total ηOC (filled squares) and apparent ηOC (open squares). The lines are a guide to the eye. For comparison purposes,ηOC for the control OLED is also shown (dashed line). For designs that are not subject to the Lambertian profile-constraint, total outcoupling efficiencies of 45% for a small molecular weight (SMW) and 73% for a polymer OLED can be obtained (dotted lines). (b) CIE vs. angle for the control OLED, and designs B (60° viewing cone) and C (120° viewing cone).

Tables (1)

Tables Icon

Table 1. Fraction of power emitted into the UB, ST, WG and SPP modes as a function of the angular range of the targeted viewing cone. The apparent ηOC within the viewing cone is also listed.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P = r ex p , s ω k xy ω 2 Im ( p * . E l ( r ex ) ) f ( r ex ) g ( ω ) ,
E s = ( k 2 4 π ε 0 ε ) i 2 k xy k z η 1 s p xy
E p = ( k 2 4 π ε 0 ε ) ( i 2 k xy k z k 2 η 2 p p xy + i 2 k xy 3 k 2 k z η 1 p p z )
δ = [ 1 θ view 0 θ view ( P ( θ ) β OC f ( θ ) f ( θ ) ) 2 d θ ] 1 2

Metrics