Abstract

We report on the use of an effective Mueller matrix to characterize the spatially-resolved diffuse backscattering Mueller matrix patterns of highly scattering media. The matrix expressions are based on assuming that the photon trajectories include only three scattering events. The numerically determined effective Mueller matrix elements are compared with the Monte Carlo simulated diffuse backscattering Mueller matrix for the polystyrene sphere suspensions. The results show that the two-dimensional intensity pattern maps of the effective Mueller matrix elements have good agreements with Monte Carlo simulations in azimuthal structure symmetry and radial dependence. It is demonstrated that this effective Mueller matrix can be used to quantitatively predict and interpret an experimentally-determined diffuse backscattering Mueller matrix from highly scattering media.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.S. Bickel and W.M. Bailey, "Stokes vectors, Mueller matrices, and polarized light scattering," Am. J. Phys. 53, 468-478 (1985).
    [CrossRef]
  2. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  3. <jrn>. W.S. Bickel, A.J. Watkins, and G. Videen, "The light-scattering Mueller matrix elements for Rayleigh -Gans, and Mie spheres," Am. J. Phys. 55, 559-561 (1987).</jrn
  4. A.H. Hielscher, A.A. Eick, J.R. Mourant, D. Shen, J.P. Freyer, and I.J. Bigio, "Diffuse backscattering Mueller matrices of highly scattering media," Opt. Express 1, 441-454 (1997).
    [CrossRef] [PubMed]
  5. G. Yao and L.H. Wang, "Two dimensional depth resolved Mueller matrix measurement in biological tissue with optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
    [CrossRef]
  6. S.L. Jiao, L.H. Wang, "Two-dimensional depth-resoved Mueller matrix of biological tissue measured with double-beam polarization-senstive optical coherence tomography," Opt. Lett. 27, 101-103 (2002).
    [CrossRef]
  7. S. Manhas1, M.K. Swami, P. Buddhiwant, N. Ghosh, P.K. Gupta1 and K. Singh, "Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry," Opt. Express 14, 190-202 (2006).
    [CrossRef]
  8. I. Berezhnyy and A. Dogariu, "Time-resolved Mueller matrix imaging polarimetry," Opt. Express 12, 4635-4649 (2004).
    [CrossRef] [PubMed]
  9. J.S. Baba, J.R. Chung, A.H. DeLaughter, B.D. Cameron, G.L. Cote,"Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-348 (2002).
    [CrossRef] [PubMed]
  10. S. Bartel and A.H. Hielscher, "Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media," Appl. Opt. 39, 1580-1588(2000).
    [CrossRef]
  11. G. Yao, L.H. Wang, "Propagation of polarizes light in turbid media: simulated animation sequences," Opt. Express 7, 198-203 (2000).
    [CrossRef] [PubMed]
  12. B. Kaplan, G. Ledanois, B. Villon, "Mueller Matrix of Dense Polystyrene Latex Sphere Suspensions: Measurements and Monte Carlo Simulation," Appl. Opt. 40, 2769-2777 (2001).
    [CrossRef]
  13. J.C. Ramella-Roman, S.A. Prahl, S.L. Jacques, "Three Monte Carlo programs of polarized light transport into scattering media: part I," Opt. Express 13, 10392 (2005).
    [CrossRef] [PubMed]
  14. X. Wang, G. Yao and L.H. Wang, "Monte Carlo model and single scattering approximation of the propagation of polarized light in turbid media containing glucose," Appl. Opt. 41, 792-801 (2002).
    [CrossRef] [PubMed]
  15. M.J. Rakovic and G.W. Kattawar, "Theoretical analysis of polarization patterns from incoherent backscattering of light," Appl. Opt. 37, 3333-3338 (1998).
    [CrossRef]
  16. B.D. Cameron, M.J. Rakovic, M. Mehrubeoglu, G.W. Kattawar, S. Rastegar, L.H. Wang, and G. Cote´, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-487 (1998).
    [CrossRef]
  17. M.J. Rakovic, G.W. Kattawar, M. Mehrubeoglu, B.D. Cameron, L.H. Wang, S. Rastegar, and G.L. Coté, "Light backscattering polarization patterns from turbid media: theory and experiments," Appl. Opt. 38, 3399-3408 (1999).
    [CrossRef]
  18. Yong Deng, Qiang Lu, Qingming Luo, Shaoqun Zeng, "A third-order scattering model for the diffuse backscattering intensity patterns of polarized light from a turbid medium," Appl. Phys. Lett. 90, 153902 (2007).
    [CrossRef]
  19. G. Bohren and D. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

2007

Yong Deng, Qiang Lu, Qingming Luo, Shaoqun Zeng, "A third-order scattering model for the diffuse backscattering intensity patterns of polarized light from a turbid medium," Appl. Phys. Lett. 90, 153902 (2007).
[CrossRef]

2006

2005

2004

2002

2001

2000

1999

1998

1997

1985

W.S. Bickel and W.M. Bailey, "Stokes vectors, Mueller matrices, and polarized light scattering," Am. J. Phys. 53, 468-478 (1985).
[CrossRef]

Baba, J.S.

J.S. Baba, J.R. Chung, A.H. DeLaughter, B.D. Cameron, G.L. Cote,"Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-348 (2002).
[CrossRef] [PubMed]

Bailey, W.M.

W.S. Bickel and W.M. Bailey, "Stokes vectors, Mueller matrices, and polarized light scattering," Am. J. Phys. 53, 468-478 (1985).
[CrossRef]

Bartel, S.

Berezhnyy, I.

Bickel, W.S.

W.S. Bickel and W.M. Bailey, "Stokes vectors, Mueller matrices, and polarized light scattering," Am. J. Phys. 53, 468-478 (1985).
[CrossRef]

Bigio, I.J.

Cameron, B.D.

Chung, J.R.

J.S. Baba, J.R. Chung, A.H. DeLaughter, B.D. Cameron, G.L. Cote,"Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-348 (2002).
[CrossRef] [PubMed]

Cote, G.L.

J.S. Baba, J.R. Chung, A.H. DeLaughter, B.D. Cameron, G.L. Cote,"Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-348 (2002).
[CrossRef] [PubMed]

Coté, G.L.

Cote´, G.

DeLaughter, A.H.

J.S. Baba, J.R. Chung, A.H. DeLaughter, B.D. Cameron, G.L. Cote,"Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-348 (2002).
[CrossRef] [PubMed]

Dogariu, A.

Eick, A.A.

Freyer, J.P.

Hielscher, A.H.

Jacques, S.L.

Jiao, S.L.

Kaplan, B.

Kattawar, G.W.

Ledanois, G.

Manhas, S.

Mehrubeoglu, M.

Mourant, J.R.

Prahl, S.A.

Rakovic, M.J.

Ramella-Roman, J.C.

Rastegar, S.

Shen, D.

Villon, B.

Wang, L.H.

Wang, X.

Yao, G.

Am. J. Phys.

W.S. Bickel and W.M. Bailey, "Stokes vectors, Mueller matrices, and polarized light scattering," Am. J. Phys. 53, 468-478 (1985).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Yong Deng, Qiang Lu, Qingming Luo, Shaoqun Zeng, "A third-order scattering model for the diffuse backscattering intensity patterns of polarized light from a turbid medium," Appl. Phys. Lett. 90, 153902 (2007).
[CrossRef]

J. Biomed. Opt.

J.S. Baba, J.R. Chung, A.H. DeLaughter, B.D. Cameron, G.L. Cote,"Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-348 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

G. Bohren and D. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

<jrn>. W.S. Bickel, A.J. Watkins, and G. Videen, "The light-scattering Mueller matrix elements for Rayleigh -Gans, and Mie spheres," Am. J. Phys. 55, 559-561 (1987).</jrn

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Comparison of the calculations of the effective Mueller matrix and Monte Carlo simulations for the suspension of 0.486 µm particles with scattering coefficients 14.8 cm-1. (a) The calculations of triple scattering approximation. (b) The calculations of double scattering approximation. (c) Monte Carlo simulations.

Fig. 2.
Fig. 2.

Comparison of the calculations of the effective Mueller matrix element M44 (line) and Monte Carlo simulations (dot) dependence on radial instance for the suspension of 0.486 µm particles with scattering coefficients 14.8 cm-1.

Fig. 3.
Fig. 3.

Comparison of the calculations of the effective Mueller matrix element M21 (line) and Monte Carlo simulations (dot) dependence on radial instance for the suspension of 0.486 µm particles with scattering coefficients 14.8 cm-1.

Fig. 4.
Fig. 4.

Comparison of the calculations of the effective Mueller matrix element M12 and Monte Carlo simulations for the suspensions of different particle diameter with scattering coefficients 14.8 cm-1.

Fig. 5.
Fig. 5.

Comparison of the calculations of the effective Mueller matrix element M44 (line) and Monte Carlo simulations (dot) as a function of the particle diameter for the suspensions of different particle diameter with scattering coefficients 14.8 cm-1

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M = [ M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 ]
M ij ( ρ , ϕ ) = μ s 3 8 μ t 0 π 2 { exp [ C 1 ( θ , ρ ) ] C 2 ( θ ) R ( ϕ ) G ( π + θ ) R ( ϕ ) }
+ exp [ C 1 ( π θ , ρ ) ] C 2 ( π θ ) R ( ϕ ) G ( π θ ) R ( ϕ ) } d θ
M ( θ ) = [ m 11 m 12 0 0 m 12 m 11 0 0 0 0 m 33 m 34 0 0 m 34 m 33 ]
R ( ϕ ) = [ 1 0 0 0 0 cos ( 2 ϕ ) sin ( 2 ϕ ) 0 0 sin ( 2 ϕ ) cos ( 2 ϕ ) 0 0 0 0 1 ]

Metrics