Abstract

We study the forces generated by an electromagnetic field on two coupled gold nanowires at the vicinity of the plasmon resonance wavelength. Two different regimes are observed, depending on the separation distance d between the wires. In the near field coupling regime, both attractive and repulsive forces can be generated, depending on d and the illumination wavelength. Furthermore, at the plasmon resonance, it is possible to create forces 100 times larger than the radiation pressure. In the far field coupling regime, both particles are pushed by the incident field. However, the force amplitude applied on each wire is modulated as a function of d, even for large separations. This indicates that the system behaves like a cavity and pseudo Fabry-Perot modes can be excited between the particles. The interaction of these modes with the plasmon resonances of the nanowires, determines the forces on the particles. Around the plasmon resonance wavelength, when the cavity is tuned to the incident light, forces are close to the average value corresponding to the radiation pressure of the incident field. On the other hand, when the cavity is detuned, the particles are retained or pushed anti-symmetrically. We finally study the forces applied on these nanowires in the centre of mass reference frame (CMRF) for the far field coupling regime. For any separation distance d we observe equilibrium positions in the CMRF for at least one illumination wavelength. The stability of these equilibrium positions is discussed in detail.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
    [CrossRef]
  3. G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971–9981 (2006).
    [CrossRef] [PubMed]
  4. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  6. A. Ashkin, “Trapping of atoms by resonant radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
    [CrossRef]
  7. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [CrossRef] [PubMed]
  8. C. Girard, A. Dereux, and O. J. F. Martin, “Theoretical analysis of light-inductive forces in scanning probe microscopy”, Phys. Rev. B 49, 13872–13881 (1994).
    [CrossRef]
  9. P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
    [CrossRef]
  10. P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
    [CrossRef]
  11. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
    [CrossRef] [PubMed]
  12. R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-onedimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
    [CrossRef]
  13. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  14. P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66,195405 (2002).
    [CrossRef]
  15. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
    [CrossRef]
  16. K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72, 075429 (2005).
    [CrossRef]
  17. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007).
    [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, Phys. Rev. B6, 4370–4379 (1972)
    [CrossRef]
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  20. M. Paulus and O. J. F. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. B 63, 066615 (2001).
    [CrossRef]
  21. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy,” J. Microsc. 202, 60–65 (2001).
    [CrossRef] [PubMed]
  22. C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
    [CrossRef]
  23. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  24. J. P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Physics 2, 27.1–27.9 (2000).
    [CrossRef]
  25. J. P. Kottmann and O.J.F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
    [CrossRef] [PubMed]
  26. C. Girard and S. Maghezzi, “Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases”, Surf. Sci. 255, L571–L578 (1991).
    [CrossRef]

2007 (1)

2006 (1)

2005 (2)

M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72, 075429 (2005).
[CrossRef]

2004 (1)

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-onedimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

2003 (1)

2002 (1)

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66,195405 (2002).
[CrossRef]

2001 (4)

M. Paulus and O. J. F. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. B 63, 066615 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy,” J. Microsc. 202, 60–65 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann and O.J.F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

2000 (3)

J. P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Physics 2, 27.1–27.9 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

1997 (2)

C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

1994 (1)

C. Girard, A. Dereux, and O. J. F. Martin, “Theoretical analysis of light-inductive forces in scanning probe microscopy”, Phys. Rev. B 49, 13872–13881 (1994).
[CrossRef]

1991 (1)

C. Girard and S. Maghezzi, “Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases”, Surf. Sci. 255, L571–L578 (1991).
[CrossRef]

1989 (1)

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

1988 (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1986 (1)

1978 (1)

A. Ashkin, “Trapping of atoms by resonant radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Arias-Gonzalez, J. R.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Trapping of atoms by resonant radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Bjorkholm, J. E.

Burns, M. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Capasso, F.

Chaumet, P.

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66,195405 (2002).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B6, 4370–4379 (1972)
[CrossRef]

Chu, S.

Dereux, A.

C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, “Theoretical analysis of light-inductive forces in scanning probe microscopy”, Phys. Rev. B 49, 13872–13881 (1994).
[CrossRef]

Draine, B. T.

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Dziedzic, J. M.

Elson, J. M.

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Fournier, J. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Girard, C.

C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, “Theoretical analysis of light-inductive forces in scanning probe microscopy”, Phys. Rev. B 49, 13872–13881 (1994).
[CrossRef]

C. Girard and S. Maghezzi, “Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases”, Surf. Sci. 255, L571–L578 (1991).
[CrossRef]

Golovchenko, J. A.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Gómez-Medina, R.

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-onedimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

Goudonnet, J.-P.

C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
[CrossRef]

Halterman, K.

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Ibanescu, M.

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B6, 4370–4379 (1972)
[CrossRef]

Johnson, S. G.

Kottmann, J. P.

J. P. Kottmann and O.J.F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy,” J. Microsc. 202, 60–65 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Physics 2, 27.1–27.9 (2000).
[CrossRef]

Lévêque, G.

Loncar, M.

Maghezzi, S.

C. Girard and S. Maghezzi, “Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases”, Surf. Sci. 255, L571–L578 (1991).
[CrossRef]

Martin, O. J. F.

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971–9981 (2006).
[CrossRef] [PubMed]

M. Paulus and O. J. F. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. B 63, 066615 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy,” J. Microsc. 202, 60–65 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, “Theoretical analysis of light-inductive forces in scanning probe microscopy”, Phys. Rev. B 49, 13872–13881 (1994).
[CrossRef]

Martin, O.J.F.

J. P. Kottmann and O.J.F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Physics 2, 27.1–27.9 (2000).
[CrossRef]

C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
[CrossRef]

Nieto-Vesperinas, M.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007).
[CrossRef] [PubMed]

J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
[CrossRef]

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66,195405 (2002).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Paulus, M.

M. Paulus and O. J. F. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. B 63, 066615 (2001).
[CrossRef]

Povinelli, M. L.

Quidant, R.

Raether, H.

H. Raether, Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Rahmani, A.

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66,195405 (2002).
[CrossRef]

Sáenz, J. J.

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-onedimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy,” J. Microsc. 202, 60–65 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Physics 2, 27.1–27.9 (2000).
[CrossRef]

Singh, S.

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy,” J. Microsc. 202, 60–65 (2001).
[CrossRef] [PubMed]

Smith, D.R.

J. P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Physics 2, 27.1–27.9 (2000).
[CrossRef]

Smythe, E. J.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Weeber, J.-C.

C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Zelenina, A. S.

Astrophys. J. (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

J. Microsc. (1)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy,” J. Microsc. 202, 60–65 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

New J. Physics (1)

J. P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Physics 2, 27.1–27.9 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (8)

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Selective nanomanipulation using optical forces,” Phys. Rev. B 66,195405 (2002).
[CrossRef]

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72, 075429 (2005).
[CrossRef]

C. Girard, J.-C. Weeber, A. Dereux, O.J.F. Martin, and J.-P. Goudonnet “Optical magnetic near-field around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16497 (1997).
[CrossRef]

M. Paulus and O. J. F. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. B 63, 066615 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, “Theoretical analysis of light-inductive forces in scanning probe microscopy”, Phys. Rev. B 49, 13872–13881 (1994).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000).
[CrossRef]

Phys. Rev. Lett. (5)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

A. Ashkin, “Trapping of atoms by resonant radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[CrossRef]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-onedimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Surf. Sci. (1)

C. Girard and S. Maghezzi, “Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases”, Surf. Sci. 255, L571–L578 (1991).
[CrossRef]

Other (3)

H. Raether, Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

P. B. Johnson and R. W. Christy, Phys. Rev. B6, 4370–4379 (1972)
[CrossRef]

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Geometry of the system: two gold nanowires with the same rectangular section and a separation distance d are illuminated with a plane wave propagating in k i direction with incident field E i .

Fig.2. .
Fig.2. .

a, d). Optical force on particle (1) and (b, e): optical force on particle (2) as a function of the separation distance d and the wavelength λ in the near field coupling regime (a, b, c) and in the far field coupling regime (d, e, f). (c, f): extinction for the complete system. A logarithmic colorscale is used for all maps and the absolute value of the forces is shown.

Fig. 3.
Fig. 3.

The regions (1) (2) and (3) formed by blue and red contours determine the three possible interaction regimes between both nanowires as a function of the distance d and the wavelength λ : (1) Attractive forces, (2) Repulsive forces, (3) Positive forces.

Fig. 4.
Fig. 4.

(a) Forces on particle 1 (solid lines) and 2 (dashed lines) and (b) extinction spectra for three distances d in the near field coupling regime.

Fig. 5.
Fig. 5.

Two coupling modes between both particles: (a) Antisymmetrical combination of both dipoles; this mode is non-radiative and produces a strong optical force. (b) Both particles are polarised along the incident field and no forces are observed.

Fig. 6.
Fig. 6.

(a) Resonance wavelength and (b) forces amplitude at the resonance for each particle, as a function of the separation distance d.

Fig. 7.
Fig. 7.

(a) Forces on particle 1 and (b) particle 2, and extinction spectra for three distances d.

Fig. 8.
Fig. 8.

(a) Forces on particle 1 and (b) particle 2; (c) extinction spectra and (d) derivative of the extinction, as a function of the distance d at the plasmon resonance wavelength λ=550nm.

Fig. 9.
Fig. 9.

(a) Evolution of force resonance wavelengths (b) force amplitudes and (c) extinction as a function of the separation distance d.

Fig. 10.
Fig. 10.

Force applied on wire (2) in the centre of mass reference frame as a function of the separation distance d and the wavelength λ. Black contours represent the equilibrium positions of the system.

Fig. 11.
Fig. 11.

(a) Force on particle (2) in the centre of mass reference frame at the plasmon resonance wavelength, (b) extinction and (c) extinction derivative, as a function of the separation distance d. Equilibrium positions FCM =0 are stable on the decreasing sides of the curve and unstable on the increasing sides.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f rad = p rad L ref x ,
p rad = ε o E i 2 ,
F = f f rad .
λ n = 2 d n + α ,

Metrics