Abstract

We study the forces generated by an electromagnetic field on two coupled gold nanowires at the vicinity of the plasmon resonance wavelength. Two different regimes are observed, depending on the separation distance d between the wires. In the near field coupling regime, both attractive and repulsive forces can be generated, depending on d and the illumination wavelength. Furthermore, at the plasmon resonance, it is possible to create forces 100 times larger than the radiation pressure. In the far field coupling regime, both particles are pushed by the incident field. However, the force amplitude applied on each wire is modulated as a function of d, even for large separations. This indicates that the system behaves like a cavity and pseudo Fabry-Perot modes can be excited between the particles. The interaction of these modes with the plasmon resonances of the nanowires, determines the forces on the particles. Around the plasmon resonance wavelength, when the cavity is tuned to the incident light, forces are close to the average value corresponding to the radiation pressure of the incident field. On the other hand, when the cavity is detuned, the particles are retained or pushed anti-symmetrically. We finally study the forces applied on these nanowires in the centre of mass reference frame (CMRF) for the far field coupling regime. For any separation distance d we observe equilibrium positions in the CMRF for at least one illumination wavelength. The stability of these equilibrium positions is discussed in detail.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
    [CrossRef]
  3. G. Lévêque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971-9981 (2006).
    [CrossRef] [PubMed]
  4. A. Ashkin, " Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  6. A. Ashkin, "Trapping of atoms by resonant radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978).
    [CrossRef]
  7. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989).
    [CrossRef] [PubMed]
  8. C. Girard, A. Dereux, and O. J. F. Martin, "Theoretical analysis of light-inductive forces in scanning probe microscopy", Phys. Rev. B 49, 13872-13881 (1994).
    [CrossRef]
  9. P. C. Chaumet, and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
    [CrossRef]
  10. P. C. Chaumet, and M. Nieto-Vesperinas, "Electromagnetic force on a metallic particle in the presence of a dielectric surface," Phys. Rev. B 62, 11185-11191 (2000).
    [CrossRef]
  11. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005).
    [CrossRef] [PubMed]
  12. R. Gómez-Medina, and J. J. Sáenz, "Unusually strong optical interactions between particles in quasi-one-dimensional geometries," Phys. Rev. Lett. 93, 243602 (2004).
    [CrossRef]
  13. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  14. P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66,195405 (2002).
    [CrossRef]
  15. J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003).
    [CrossRef]
  16. K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
    [CrossRef]
  17. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007).
    [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370-4379 (1972)
    [CrossRef]
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  20. M. Paulus, and O. J. F. Martin, "Green’s tensor technique for scattering in two-dimensional stratified media," Phys. Rev. B 63, 066615 (2001).
    [CrossRef]
  21. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001).
    [CrossRef] [PubMed]
  22. C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
    [CrossRef]
  23. B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  24. J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant particles," New J. Phys. 2, 27.1-27.9 (2000).
    [CrossRef]
  25. J. P. Kottmann and O.J.F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
    [CrossRef] [PubMed]
  26. C. Girard and S. Maghezzi, "Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases," Surf. Sci. 255, L571-L578 (1991).
    [CrossRef]

2007

2006

2005

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005).
[CrossRef] [PubMed]

2004

R. Gómez-Medina, and J. J. Sáenz, "Unusually strong optical interactions between particles in quasi-one-dimensional geometries," Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

2003

2002

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66,195405 (2002).
[CrossRef]

2001

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

M. Paulus, and O. J. F. Martin, "Green’s tensor technique for scattering in two-dimensional stratified media," Phys. Rev. B 63, 066615 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001).
[CrossRef] [PubMed]

J. P. Kottmann and O.J.F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
[CrossRef] [PubMed]

2000

P. C. Chaumet, and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

P. C. Chaumet, and M. Nieto-Vesperinas, "Electromagnetic force on a metallic particle in the presence of a dielectric surface," Phys. Rev. B 62, 11185-11191 (2000).
[CrossRef]

1997

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
[CrossRef]

1994

C. Girard, A. Dereux, and O. J. F. Martin, "Theoretical analysis of light-inductive forces in scanning probe microscopy", Phys. Rev. B 49, 13872-13881 (1994).
[CrossRef]

1991

C. Girard and S. Maghezzi, "Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases," Surf. Sci. 255, L571-L578 (1991).
[CrossRef]

1989

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989).
[CrossRef] [PubMed]

1988

B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

1986

1978

A. Ashkin, "Trapping of atoms by resonant radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

1970

A. Ashkin, " Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Arias-Gonzalez, J. R.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin, "Trapping of atoms by resonant radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

A. Ashkin, " Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Bjorkholm, J. E.

Burns, M. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989).
[CrossRef] [PubMed]

Capasso, F.

Chaumet, P.

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66,195405 (2002).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet, and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

P. C. Chaumet, and M. Nieto-Vesperinas, "Electromagnetic force on a metallic particle in the presence of a dielectric surface," Phys. Rev. B 62, 11185-11191 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

Chu, S.

Dereux, A.

C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, "Theoretical analysis of light-inductive forces in scanning probe microscopy", Phys. Rev. B 49, 13872-13881 (1994).
[CrossRef]

Draine, B. T.

B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Dziedzic, J. M.

Elson, J. M.

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Fournier, J. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989).
[CrossRef] [PubMed]

Girard, C.

C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, "Theoretical analysis of light-inductive forces in scanning probe microscopy", Phys. Rev. B 49, 13872-13881 (1994).
[CrossRef]

C. Girard and S. Maghezzi, "Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases," Surf. Sci. 255, L571-L578 (1991).
[CrossRef]

Golovchenko, J. A.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989).
[CrossRef] [PubMed]

Gómez-Medina, R.

R. Gómez-Medina, and J. J. Sáenz, "Unusually strong optical interactions between particles in quasi-one-dimensional geometries," Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

Goudonnet, J.-P.

C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
[CrossRef]

Halterman, K.

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Ibanescu, M.

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

Johnson, S. G.

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001).
[CrossRef] [PubMed]

J. P. Kottmann and O.J.F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
[CrossRef] [PubMed]

Lévêque, G.

Loncar, M.

Maghezzi, S.

C. Girard and S. Maghezzi, "Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases," Surf. Sci. 255, L571-L578 (1991).
[CrossRef]

Martin, O. J. F.

G. Lévêque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971-9981 (2006).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001).
[CrossRef] [PubMed]

M. Paulus, and O. J. F. Martin, "Green’s tensor technique for scattering in two-dimensional stratified media," Phys. Rev. B 63, 066615 (2001).
[CrossRef]

C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, "Theoretical analysis of light-inductive forces in scanning probe microscopy", Phys. Rev. B 49, 13872-13881 (1994).
[CrossRef]

Martin, O.J.F.

Nieto-Vesperinas, M.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007).
[CrossRef] [PubMed]

J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003).
[CrossRef]

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66,195405 (2002).
[CrossRef]

P. C. Chaumet, and M. Nieto-Vesperinas, "Electromagnetic force on a metallic particle in the presence of a dielectric surface," Phys. Rev. B 62, 11185-11191 (2000).
[CrossRef]

P. C. Chaumet, and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Paulus, M.

M. Paulus, and O. J. F. Martin, "Green’s tensor technique for scattering in two-dimensional stratified media," Phys. Rev. B 63, 066615 (2001).
[CrossRef]

Povinelli, M. L.

Quidant, R.

Rahmani, A.

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66,195405 (2002).
[CrossRef]

Sáenz, J. J.

R. Gómez-Medina, and J. J. Sáenz, "Unusually strong optical interactions between particles in quasi-one-dimensional geometries," Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001).
[CrossRef] [PubMed]

Singh, S.

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Smythe, E. J.

Weeber, J.-C.

C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Zelenina, A. S.

Astrophys. J.

B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

J. Microsc.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66,195405 (2002).
[CrossRef]

M. Paulus, and O. J. F. Martin, "Green’s tensor technique for scattering in two-dimensional stratified media," Phys. Rev. B 63, 066615 (2001).
[CrossRef]

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

C. Girard, A. Dereux, and O. J. F. Martin, "Theoretical analysis of light-inductive forces in scanning probe microscopy", Phys. Rev. B 49, 13872-13881 (1994).
[CrossRef]

P. C. Chaumet, and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

P. C. Chaumet, and M. Nieto-Vesperinas, "Electromagnetic force on a metallic particle in the presence of a dielectric surface," Phys. Rev. B 62, 11185-11191 (2000).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin, " Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

A. Ashkin, "Trapping of atoms by resonant radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989).
[CrossRef] [PubMed]

R. Gómez-Medina, and J. J. Sáenz, "Unusually strong optical interactions between particles in quasi-one-dimensional geometries," Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Surf. Sci.

C. Girard and S. Maghezzi, "Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases," Surf. Sci. 255, L571-L578 (1991).
[CrossRef]

Other

J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant particles," New J. Phys. 2, 27.1-27.9 (2000).
[CrossRef]

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

H. Raether, Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Geometry of the system: two gold nanowires with the same rectangular section and a separation distance d are illuminated with a plane wave propagating in k i direction with incident field E i .

Fig.2. .
Fig.2. .

a, d). Optical force on particle (1) and (b, e): optical force on particle (2) as a function of the separation distance d and the wavelength λ in the near field coupling regime (a, b, c) and in the far field coupling regime (d, e, f). (c, f): extinction for the complete system. A logarithmic colorscale is used for all maps and the absolute value of the forces is shown.

Fig. 3.
Fig. 3.

The regions (1) (2) and (3) formed by blue and red contours determine the three possible interaction regimes between both nanowires as a function of the distance d and the wavelength λ : (1) Attractive forces, (2) Repulsive forces, (3) Positive forces.

Fig. 4.
Fig. 4.

(a) Forces on particle 1 (solid lines) and 2 (dashed lines) and (b) extinction spectra for three distances d in the near field coupling regime.

Fig. 5.
Fig. 5.

Two coupling modes between both particles: (a) Antisymmetrical combination of both dipoles; this mode is non-radiative and produces a strong optical force. (b) Both particles are polarised along the incident field and no forces are observed.

Fig. 6.
Fig. 6.

(a) Resonance wavelength and (b) forces amplitude at the resonance for each particle, as a function of the separation distance d.

Fig. 7.
Fig. 7.

(a) Forces on particle 1 and (b) particle 2, and extinction spectra for three distances d.

Fig. 8.
Fig. 8.

(a) Forces on particle 1 and (b) particle 2; (c) extinction spectra and (d) derivative of the extinction, as a function of the distance d at the plasmon resonance wavelength λ=550nm.

Fig. 9.
Fig. 9.

(a) Evolution of force resonance wavelengths (b) force amplitudes and (c) extinction as a function of the separation distance d.

Fig. 10.
Fig. 10.

Force applied on wire (2) in the centre of mass reference frame as a function of the separation distance d and the wavelength λ. Black contours represent the equilibrium positions of the system.

Fig. 11.
Fig. 11.

(a) Force on particle (2) in the centre of mass reference frame at the plasmon resonance wavelength, (b) extinction and (c) extinction derivative, as a function of the separation distance d. Equilibrium positions FCM =0 are stable on the decreasing sides of the curve and unstable on the increasing sides.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f rad = p rad L ref x ,
p rad = ε o E i 2 ,
F = f f rad .
λ n = 2 d n + α ,

Metrics