Abstract

We compare two simple mechanisms for the enhancement of the time delay in slow light systems. Both are based on the superposition of the Brillouin gain with additional loss. As we will show in theory and experiment if two losses are placed at the wings of a SBS gain, contrary to other methods, the loss power increases the time delay. This leads to higher delay times at lower optical powers and to an increase of the zero gain delay of more than 50%. With this method we achieved a time delay of more than 120ns for pulses with a temporal width of 30ns. To the best of our knowledge, this is the highest time delay in just one fiber spool. Beside the enhancement of the time delay the method could have the potential to decrease the pulse distortions for high bit rate signals.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 11, 1884-1897 (2003).
    [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
    [CrossRef]
  3. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
    [CrossRef]
  4. D. Strekalov, A. B. Matsko, and L. Maleki, "Nonlinear properties of electromagnetically induced transparency in Rubidium vapor," J. Opt. Soc. Am. B 22, 65-71 (2005).
    [CrossRef]
  5. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnian, P. Palinginis, T. Li, H. I. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
    [CrossRef] [PubMed]
  6. M. van der Poel, J. Mork, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005).
    [CrossRef] [PubMed]
  7. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  8. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  9. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "12-GHz-Bandwidth SBS Slow Light in Optical Fibers," in Proc. of OFC 2006, paper PD1 (2006).
  10. T. Schneider, M. Junker, and K. U. Lauterbach, "Potential ultrawide slow-light bandwidth enhancement," Opt. Express 14, 11082-11087 (2006).
    [CrossRef] [PubMed]
  11. Z. Zhu, D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Express 14, 7238-7245 (2006).
    [CrossRef] [PubMed]
  12. S. Chin, M. Gonzalez-Herraez, L. Thevenaz, "Zero-gain slow & fast light propagation in an optical fiber," Opt. Express 14, 10684-10692 (2006).
    [CrossRef] [PubMed]
  13. T. Schneider, M. Junker, and K. U. Lauterbach, "Time delay enhancement in stimulated Brillouin scattering slow light systems," Opt. Lett. 32, 220 - 223 (2007).
    [CrossRef] [PubMed]
  14. T. Schneider, "Nonlinear Optics in Telecommunications," Advanced Texts in Physics, (Springer Verlag, New York, 2004).
  15. M. D. Stenner, M. A. Neitfeld, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995 - 10002 (2005).
    [CrossRef] [PubMed]
  16. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, "Broadband SBS Slow Light in an Optical Fiber," J. Lightwave Technol. 25, 201 - 206 (2007).
    [CrossRef]

2007 (2)

2006 (3)

2005 (5)

M. van der Poel, J. Mork, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

D. Strekalov, A. B. Matsko, and L. Maleki, "Nonlinear properties of electromagnetically induced transparency in Rubidium vapor," J. Opt. Soc. Am. B 22, 65-71 (2005).
[CrossRef]

M. D. Stenner, M. A. Neitfeld, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995 - 10002 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 11, 1884-1897 (2003).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Chang, S. W.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 11, 1884-1897 (2003).
[CrossRef]

Chang-Hasnian, C. J.

Chin, S.

Chuang, S. L.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnian, P. Palinginis, T. Li, H. I. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 11, 1884-1897 (2003).
[CrossRef]

Dawes, A. M. C.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Engelen, R. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, "Broadband SBS Slow Light in an Optical Fiber," J. Lightwave Technol. 25, 201 - 206 (2007).
[CrossRef]

Z. Zhu, D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Express 14, 7238-7245 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gersen, H.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Gonzalez-Herraez, M.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Hvam, J. M.

Junker, M.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 11, 1884-1897 (2003).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Ku, P. C.

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnian, P. Palinginis, T. Li, H. I. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 11, 1884-1897 (2003).
[CrossRef]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Lauterbach, K. U.

Li, T.

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Maleki, L.

Matsko, A. B.

Mork, J.

Neitfeld, M. A.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Palinginis, P.

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Schneider, T.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Sedgwick, F.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Stenner, M. D.

Strekalov, D.

Thevenaz, L.

van der Poel, M.

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Wang, H. I.

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Willner, A. E.

Zhang, L.

Zhu, Z.

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 11, 1884-1897 (2003).
[CrossRef]

Other (2)

T. Schneider, "Nonlinear Optics in Telecommunications," Advanced Texts in Physics, (Springer Verlag, New York, 2004).

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "12-GHz-Bandwidth SBS Slow Light in Optical Fibers," in Proc. of OFC 2006, paper PD1 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Normalized gain and power for the pump waves (top), normalized gain at ω0 (middle) and group index change (bottom) for a gain produced by just one pump laser (a), for a gain superimposed with a broad loss produced by an additional direct modulated pump laser (b) and for a gain superimposed with two losses at its wings (c).

Fig. 2.
Fig. 2.

Normalized group index change as a function of the normalized frequency separation between the loss spectra for different relations between gain (g 1) and loss (g 2), both have the same bandwidth (γ12).

Fig. 3.
Fig. 3.

Normalized gain and group index change for a pure Gaussian Brillouin spectrum (dashed line) and a Gaussian spectrum superimposed with two Brillouin losses at its wings.

Fig. 4.
Fig. 4.

Schematic experimental set up (polarizers, attenuators and bias controls are not shown). MZM; Mach-Zehnder modulator, PD; photodiode; SSMF; standard single mode fiber, C; circulator, EDFA erbium doped fiber amplifier.

Fig. 5.
Fig. 5.

Experimental results for the time delay as a function of the pump power (top) and selected pulse shapes for different time delays (bottom). On the left side the results for a natural Brillouin gain of around 30MHz are shown, on the right side the gain bandwidth was broadened to 60MHz (both FWHM). The dotted lines show the reference pulses, with the dashed-dotted lines (squares) the case without an additional loss is shown. The solid lines show the case if two loss spectra are placed at the wings of the gain (left side, triangles down P Loss=14dBm, triangles up P Loss=11dBm, δ/γ=1). The loss power for the right side was 9dBm and the frequency separation between the loss spectra 56MHz). The dashed line on the left side (circles) shows the result for the direct superposition of a gain with a broad loss (the loss power was 10.1dBm and its bandwidth 180MHz).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) = exp ( ik ( ω ) z ) = exp ( izn 0 ω c + ig 0 γ ( ω ω 0 ) + i γ )
H ( ω ) = exp ( g 0 γ 2 ( ω ω 0 ) 2 + γ 2 )
Δ t D = z c ( n 0 1 ) + g 0 γ γ 2 ( ω ω 0 ) 2 [ ( ω ω 0 ) 2 + γ 2 ] 2
H ( ω ) = exp ( k L + ig 1 γ 1 ( ω ω 0 ) + i γ 1 ig 2 γ 2 ( ω ω 0 ) + i γ 2 )
H ( ω ) = exp ( k L + ig 1 γ 1 ( ω ω 0 ) + i γ 1 ig 2 γ 2 ω− ( ω 0 δ ) + i γ 2 ig 2 γ 2 ω− ( ω 0 + δ ) + i γ 2 )
g ( ω ) = g G exp ( ω ω 0 γ G ) 2 erfc [ i ( ω ω 0 γ G ) ]

Metrics