Abstract

We examine the mechanism responsible for the optical activity of a two-dimensional array of gold nanostructures with no mirror symmetry on a dielectric substrate. Measurements with different incident angles, polarizations and sample orientations allow us to reveal that observed polarization effect is enhanced by surface plasmon resonance. By performing numerical simulation with rigorous diffraction theory we also show that the grating chirality can be described in terms of the non-coplanarity of the electric field vectors at the front (air-metal) and back (substrate-metal) sides of the grating layer.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, Berlin, 1988).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  3. S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Slelective Suppression of Excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
    [CrossRef] [PubMed]
  4. S. A. Maier, and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  5. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).
  6. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy," Opt. Lett. 28, 713-715 (2003).
    [CrossRef] [PubMed]
  7. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
    [CrossRef] [PubMed]
  8. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
    [CrossRef] [PubMed]
  9. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  10. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006).
    [CrossRef]
  11. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
    [CrossRef]
  12. M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
    [CrossRef] [PubMed]
  13. In the inset of Fig. 1 of Ref. 8, images of the left- and right-twisted structures were exchanged by mistake.
  14. K. Sato, "Measurement of Magneto-Optical Kerr Effect Using Piezo-Birefringent Modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
    [CrossRef]
  15. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  16. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
    [CrossRef]
  17. D. W. Lynch, and W. R. Hunter, "Gold(Au)" in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1984).
  18. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B. 67, 035424 (2003).
    [CrossRef]
  19. W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996).
    [CrossRef]
  20. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (New York, Pergamon Press 1960).
  21. M. Born, Optik (Springer, Berlin, 1930).
  22. Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
    [CrossRef]
  23. B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
    [CrossRef]
  24. R. C. Weast, M. J. Astle, and W.H. Beyer, CRC Handbook of Chemistry and Physics, 64 th ed. (CRC Press, Florida, 1984).
  25. A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
    [CrossRef]
  26. T. Ohno and S. Miyanishi, "Study of surface plasmon chirality induced by Archimedes’ spiral grooves," Opt. Express 14, 6285-6290 (2006).
    [CrossRef] [PubMed]

2007

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

2006

T. Ohno and S. Miyanishi, "Study of surface plasmon chirality induced by Archimedes’ spiral grooves," Opt. Express 14, 6285-6290 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006).
[CrossRef]

2005

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

S. A. Maier, and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

2004

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).

2003

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy," Opt. Lett. 28, 713-715 (2003).
[CrossRef] [PubMed]

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B. 67, 035424 (2003).
[CrossRef]

2001

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Slelective Suppression of Excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
[CrossRef]

1996

W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996).
[CrossRef]

1981

K. Sato, "Measurement of Magneto-Optical Kerr Effect Using Piezo-Birefringent Modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
[CrossRef]

Anceau, C.

Atwater, H. A.

S. A. Maier, and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Bagnall, D. M.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Bai, B.

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Barns, W. L.

W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996).
[CrossRef]

Brasselet, S.

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Darmanyan, S. A.

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B. 67, 035424 (2003).
[CrossRef]

Decker, M.

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
[CrossRef]

Elliott, J.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006).
[CrossRef]

Gadenne, P.

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Giessen, H.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Slelective Suppression of Excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Kiston, S. C.

W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996).
[CrossRef]

Klein, M. W.

Koch, S. W.

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

Krasavin, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Krasavin, A. V.

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

Kuhl, J.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Slelective Suppression of Excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
[CrossRef]

Li, L.

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Linden, S.

M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Slelective Suppression of Excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Miyanishi, S.

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Ohno, T.

Osipov, M.

Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
[CrossRef]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Potts, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Preist, T. W.

W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996).
[CrossRef]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Reichelt, M.

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006).
[CrossRef]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996).
[CrossRef]

Sato, K.

K. Sato, "Measurement of Magneto-Optical Kerr Effect Using Piezo-Birefringent Modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
[CrossRef]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006).
[CrossRef]

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

Smolyaninov, I. I.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).

Stroucken, T.

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
[CrossRef]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Wegener, M.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Wright, E. M.

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

Zayats, A. V.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B. 67, 035424 (2003).
[CrossRef]

Zheldev, N. I.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006).
[CrossRef]

Zheludev, N.

Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
[CrossRef]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Zyss, J.

Appl. Phys. Lett.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
[CrossRef]

A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005).
[CrossRef]

J. Appl. Phys.

S. A. Maier, and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

K. Sato, "Measurement of Magneto-Optical Kerr Effect Using Piezo-Birefringent Modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).

T. Ohno and S. Miyanishi, "Study of surface plasmon chirality induced by Archimedes’ spiral grooves," Opt. Express 14, 6285-6290 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998).
[CrossRef]

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B. 67, 035424 (2003).
[CrossRef]

W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996).
[CrossRef]

Phys. Rev. Lett.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Slelective Suppression of Excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Other

In the inset of Fig. 1 of Ref. 8, images of the left- and right-twisted structures were exchanged by mistake.

D. W. Lynch, and W. R. Hunter, "Gold(Au)" in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1984).

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (New York, Pergamon Press 1960).

M. Born, Optik (Springer, Berlin, 1930).

R. C. Weast, M. J. Astle, and W.H. Beyer, CRC Handbook of Chemistry and Physics, 64 th ed. (CRC Press, Florida, 1984).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental scheme. Light from tungsten lamps was horizontally polarized. SEM image shows grating composed of left-twisted gammadions. We rotated the sample around the X- and Y- axis for s- and p- polarized measurement, respectively [13].

Fig. 2.
Fig. 2.

Transmission spectra of s-polarized (a) and p-polarized (b) measurement.

Fig. 3.
Fig. 3.

Sample azimuth angle dependence of the polarization rotation measured at 720nm for incident angle of 0° (a), +3° (b), and +7°(c). Blue curves are the fitting curves with formula of Eq. (3).

Fig. 4.
Fig. 4.

Polarization rotation spectra of s-polarized(a) and p-polarized(b) measurement.

Fig. 5.
Fig. 5.

(a). Schematic diagram of the electric filed distribution at normal incidence. Incident light is 752nm and Y-polarization. The geometrical parameters are given by a=295nm, b=207nm and c=88nm, and film thickness correspond to the value which is indicated in the Sec. 2. (b) (c) Numerically calculated ξ(r) for Y-polarized incident light at λ=752nm with lefttwisted pattern and cross pattern. Both (b) and (c) used same scale.

Fig. 6.
Fig. 6.

(a). Transmission spectra. (b). Polarization rotation spectra. Both spectra are of left-twisted gammadion at normal incidence.

Fig. 7.
Fig. 7.

Spectra of field twist parameter (see text in Sec. 5). Numerical values of structures for calculation are provided in Fig. 5 and the text in the Sec. 5.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( λ ψ s a ) 2 = ε 1 ( λ ψ s ) ε 2 ε 1 ( λ ψ s ) + ε 2 sin 2 ψ ,
λ ψ p a = ε 1 ( λ ψ p ) ε 2 ε 1 ( λ ψ p ) + ε 2 ± sin ψ .
Δ = θ + A sin ( 2 φ + B ) + C sin ( 4 φ + D )
U NON ( r ) 0 D ( E · [ × E ] ) dz = f ( d , δ ) ( n · [ E air ( r ) × E sub ( r ) ] ) ,
Ξ = 1 A E 2 cell dxdy ξ ( x , y ) ,

Metrics