Abstract

Transparent Yb3+, Er3+ and Tm3+ co-doped nano-glass-ceramics 32(SiO2)9(AlO1.5)31.5(CdF2)18.5(PbF2)5.5(ZnF2):3.5(Yb-Er-TmF3), mol%, have been prepared where co-dopants mostly partition in nano-crystals Pb1-x(Yb3+,Er3+,Tm3+)xF2+x embedded in the glass network. The Yb3+ ensures high absorption at 980 nm telecommunication pump wavelength and further phonon-mediated energy transfer to Er3+ and Tm3+ co-dopants. Er3+ and Tm3+ radiate overlapping emission bands from their lowest energy levels, with similar lifetime of about 9 ms, which cover the range between 1.50 to 1.70 µm. The lifetime of all higher levels of Er3+ and Tm3+ dopants is shorter than 70 µs due to short inter-dopant distances in the nano-crystals resulting in fast energy transfer to their lowest levels.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.C. Thomas, B.I. Shraiman, P.F. Glodis, and M.J. Stephen, “Towards the clarity limit in optical fibre,” Nature (London) 404, 262–264 (2000).
    [CrossRef]
  2. E. Desurvire, Erbium-doped Fibre Amplifiers: Materials, Devices and Applications. (Wiley, New York, 1994).
  3. P.C. Becker, N.A. Olsson, and J.R. Simpson, Erbium-doped Fibre Amplifiers: Fundamentals and Technology, (Academic, San Diego, 1999).
  4. S. Sudo (Ed.), Optical Fibre Amplifiers: Materials, Devices, and Applications. (Artech House Inc., Boston, 1997).
  5. G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Opt. Mater. 28, 638–642 (2006).
    [CrossRef]
  6. A. Mori, Y. Ohishi, S. Sudo, A. Mori, T. Sakamoto, K. Kobayashi, K. Ishikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, and H. Shimizu, “1.58 µm broad-band erbium-doped tellurite fibre amplifier,” J. Lightwave Technol. 20, 794–799 (2002).
    [CrossRef]
  7. V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
    [CrossRef]
  8. V. Rodriguez, V.K. Tikhomirov, J. Mendez-Ramos, and A.B. Seddon, “The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69, 128–134 (2005).
    [CrossRef]
  9. K. Driesen, V.K. Tikhomirov, C. Görller-Walrand, V.D. Rodríguez, and A.B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88, art.073111 (2006).
    [CrossRef]
  10. V.K. Tikhomirov, K. Driesen, and C. Görller-Walrand, “Low energy robust host heavily doped with Dy3+ for emission at 1.3 to 1.4 µm,” Phys. Status Solidi (a) 204, 839–845 (2007).
    [CrossRef]
  11. J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
    [CrossRef]
  12. F. Auzel “Upconversion and Anti-Stokes processes with f and d Ions in Solids,” Chem. Rev. 105, 139–173 (2004).
    [CrossRef]
  13. V.K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, “Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass,” Phys. Status Solidi (a) 202, R73–R75 (2005).
    [CrossRef]
  14. S. Hull, “Superionics crystal structures and conduction processes,” Rep. Prog. Phys. 67, 1233–1314 (2004).
    [CrossRef]
  15. D.J.M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44, 75–81 (1982).
    [CrossRef]
  16. M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
    [CrossRef]
  17. Y.H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
    [CrossRef]
  18. C. Görller-Walrand, K. Binnemans, and K.A. Gschneider, and L. Eyring, ed. (North-Holland, Amsterdam, 1996). v.23, p.121.
  19. A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
    [CrossRef]

2007 (1)

V.K. Tikhomirov, K. Driesen, and C. Görller-Walrand, “Low energy robust host heavily doped with Dy3+ for emission at 1.3 to 1.4 µm,” Phys. Status Solidi (a) 204, 839–845 (2007).
[CrossRef]

2006 (2)

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Opt. Mater. 28, 638–642 (2006).
[CrossRef]

2005 (2)

V. Rodriguez, V.K. Tikhomirov, J. Mendez-Ramos, and A.B. Seddon, “The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69, 128–134 (2005).
[CrossRef]

V.K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, “Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass,” Phys. Status Solidi (a) 202, R73–R75 (2005).
[CrossRef]

2004 (3)

S. Hull, “Superionics crystal structures and conduction processes,” Rep. Prog. Phys. 67, 1233–1314 (2004).
[CrossRef]

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

F. Auzel “Upconversion and Anti-Stokes processes with f and d Ions in Solids,” Chem. Rev. 105, 139–173 (2004).
[CrossRef]

2002 (2)

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

A. Mori, Y. Ohishi, S. Sudo, A. Mori, T. Sakamoto, K. Kobayashi, K. Ishikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, and H. Shimizu, “1.58 µm broad-band erbium-doped tellurite fibre amplifier,” J. Lightwave Technol. 20, 794–799 (2002).
[CrossRef]

2000 (2)

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

G.C. Thomas, B.I. Shraiman, P.F. Glodis, and M.J. Stephen, “Towards the clarity limit in optical fibre,” Nature (London) 404, 262–264 (2000).
[CrossRef]

1993 (1)

Y.H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

1982 (1)

D.J.M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44, 75–81 (1982).
[CrossRef]

Auzel, F.

F. Auzel “Upconversion and Anti-Stokes processes with f and d Ions in Solids,” Chem. Rev. 105, 139–173 (2004).
[CrossRef]

Bazhenov, A.V.

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

Bdikin, I.K.

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

Becker, P.C.

P.C. Becker, N.A. Olsson, and J.R. Simpson, Erbium-doped Fibre Amplifiers: Fundamentals and Technology, (Academic, San Diego, 1999).

Beggiora, M.

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

Bevan, D.J.M.

D.J.M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44, 75–81 (1982).
[CrossRef]

Biner, D.

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

Binnemans, K.

C. Görller-Walrand, K. Binnemans, and K.A. Gschneider, and L. Eyring, ed. (North-Holland, Amsterdam, 1996). v.23, p.121.

Chaussedent, S.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Chiasera, A.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Chichkov, B.

V.K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, “Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass,” Phys. Status Solidi (a) 202, R73–R75 (2005).
[CrossRef]

Dantelle, G.

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Opt. Mater. 28, 638–642 (2006).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-doped Fibre Amplifiers: Materials, Devices and Applications. (Wiley, New York, 1994).

Driesen, K.

V.K. Tikhomirov, K. Driesen, and C. Görller-Walrand, “Low energy robust host heavily doped with Dy3+ for emission at 1.3 to 1.4 µm,” Phys. Status Solidi (a) 204, 839–845 (2007).
[CrossRef]

K. Driesen, V.K. Tikhomirov, C. Görller-Walrand, V.D. Rodríguez, and A.B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88, art.073111 (2006).
[CrossRef]

Ferrari, M.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

Furniss, D.

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

Fursova, T.N.

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

Glodis, P.F.

G.C. Thomas, B.I. Shraiman, P.F. Glodis, and M.J. Stephen, “Towards the clarity limit in optical fibre,” Nature (London) 404, 262–264 (2000).
[CrossRef]

Görller-Walrand, C.

V.K. Tikhomirov, K. Driesen, and C. Görller-Walrand, “Low energy robust host heavily doped with Dy3+ for emission at 1.3 to 1.4 µm,” Phys. Status Solidi (a) 204, 839–845 (2007).
[CrossRef]

K. Driesen, V.K. Tikhomirov, C. Görller-Walrand, V.D. Rodríguez, and A.B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88, art.073111 (2006).
[CrossRef]

C. Görller-Walrand, K. Binnemans, and K.A. Gschneider, and L. Eyring, ed. (North-Holland, Amsterdam, 1996). v.23, p.121.

Greis, O.

D.J.M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44, 75–81 (1982).
[CrossRef]

Grimm, J.

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

Gschneider, K.A.

C. Görller-Walrand, K. Binnemans, and K.A. Gschneider, and L. Eyring, ed. (North-Holland, Amsterdam, 1996). v.23, p.121.

Güdel, H.U.

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

Hoshino, K.

Hull, S.

S. Hull, “Superionics crystal structures and conduction processes,” Rep. Prog. Phys. 67, 1233–1314 (2004).
[CrossRef]

Ishikano, K.

Kanamori, T.

Kobayashi, K.

Koch, J.

V.K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, “Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass,” Phys. Status Solidi (a) 202, R73–R75 (2005).
[CrossRef]

Krämer, K.W.

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

Kulakov, A.B.

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

Maksimuk, M.Y.

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

Mattarelli, M.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Mendez-Ramos, J.

V. Rodriguez, V.K. Tikhomirov, J. Mendez-Ramos, and A.B. Seddon, “The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69, 128–134 (2005).
[CrossRef]

Montagna, M.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

Mori, A.

Mortier, M.

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Opt. Mater. 28, 638–642 (2006).
[CrossRef]

Moser, E.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Nunzi Conti, G.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Ohishi, Y.

Ohwaki, J.

Y.H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

Oikawa, K.

Olsson, N.A.

P.C. Becker, N.A. Olsson, and J.R. Simpson, Erbium-doped Fibre Amplifiers: Fundamentals and Technology, (Academic, San Diego, 1999).

Patriarche, G.

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Opt. Mater. 28, 638–642 (2006).
[CrossRef]

Pelli, S.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Reaney, I.M.

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

Righini, G.C.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Rodriguez, V.

V. Rodriguez, V.K. Tikhomirov, J. Mendez-Ramos, and A.B. Seddon, “The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69, 128–134 (2005).
[CrossRef]

Rodríguez, V.D.

K. Driesen, V.K. Tikhomirov, C. Görller-Walrand, V.D. Rodríguez, and A.B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88, art.073111 (2006).
[CrossRef]

Rolli, R.

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

Sakamoto, T.

Seddon, A.B.

V. Rodriguez, V.K. Tikhomirov, J. Mendez-Ramos, and A.B. Seddon, “The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69, 128–134 (2005).
[CrossRef]

K. Driesen, V.K. Tikhomirov, C. Görller-Walrand, V.D. Rodríguez, and A.B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88, art.073111 (2006).
[CrossRef]

Shimizu, H.

Shraiman, B.I.

G.C. Thomas, B.I. Shraiman, P.F. Glodis, and M.J. Stephen, “Towards the clarity limit in optical fibre,” Nature (London) 404, 262–264 (2000).
[CrossRef]

Simpson, J.R.

P.C. Becker, N.A. Olsson, and J.R. Simpson, Erbium-doped Fibre Amplifiers: Fundamentals and Technology, (Academic, San Diego, 1999).

Smirnova, I.S.

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

Stephen, M.J.

G.C. Thomas, B.I. Shraiman, P.F. Glodis, and M.J. Stephen, “Towards the clarity limit in optical fibre,” Nature (London) 404, 262–264 (2000).
[CrossRef]

Strähle, J.

D.J.M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44, 75–81 (1982).
[CrossRef]

Sudo, S.

Suyver, J.F.

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

Thomas, G.C.

G.C. Thomas, B.I. Shraiman, P.F. Glodis, and M.J. Stephen, “Towards the clarity limit in optical fibre,” Nature (London) 404, 262–264 (2000).
[CrossRef]

Tikhomirov, V.K.

V.K. Tikhomirov, K. Driesen, and C. Görller-Walrand, “Low energy robust host heavily doped with Dy3+ for emission at 1.3 to 1.4 µm,” Phys. Status Solidi (a) 204, 839–845 (2007).
[CrossRef]

V. Rodriguez, V.K. Tikhomirov, J. Mendez-Ramos, and A.B. Seddon, “The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69, 128–134 (2005).
[CrossRef]

V.K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, “Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass,” Phys. Status Solidi (a) 202, R73–R75 (2005).
[CrossRef]

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

K. Driesen, V.K. Tikhomirov, C. Görller-Walrand, V.D. Rodríguez, and A.B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88, art.073111 (2006).
[CrossRef]

van Veen, M.K.

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

Vivien, D.

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Opt. Mater. 28, 638–642 (2006).
[CrossRef]

Wand, D.

V.K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, “Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass,” Phys. Status Solidi (a) 202, R73–R75 (2005).
[CrossRef]

Wang, Y.H.

Y.H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

Zampedri, L.

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

V.K. Tikhomirov, D. Furniss, I.M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics,” Appl. Phys. Lett. 81, 1937–1939 (2002).
[CrossRef]

Y.H. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

Chem. Rev. (1)

F. Auzel “Upconversion and Anti-Stokes processes with f and d Ions in Solids,” Chem. Rev. 105, 139–173 (2004).
[CrossRef]

Europhys. Lett. (1)

V. Rodriguez, V.K. Tikhomirov, J. Mendez-Ramos, and A.B. Seddon, “The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69, 128–134 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, and H.U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[CrossRef]

J. Non-Cryst. Sol. (1)

M. Mattarelli, V.K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G.C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Sol. 345&346, 354–358 (2004).
[CrossRef]

J. Solid State Chem. (1)

D.J.M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44, 75–81 (1982).
[CrossRef]

Nature (London) (1)

G.C. Thomas, B.I. Shraiman, P.F. Glodis, and M.J. Stephen, “Towards the clarity limit in optical fibre,” Nature (London) 404, 262–264 (2000).
[CrossRef]

Opt. Mater. (1)

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Opt. Mater. 28, 638–642 (2006).
[CrossRef]

Phys. Sol. State (1)

A.V. Bazhenov, I.S. Smirnova, T.N. Fursova, M.Y. Maksimuk, A.B. Kulakov, and I.K. Bdikin, “Optical phonon spectra of PbF2 single crystals,” Phys. Sol. State 42, 41–50 (2000).
[CrossRef]

Phys. Status Solidi (a) (2)

V.K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, “Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass,” Phys. Status Solidi (a) 202, R73–R75 (2005).
[CrossRef]

V.K. Tikhomirov, K. Driesen, and C. Görller-Walrand, “Low energy robust host heavily doped with Dy3+ for emission at 1.3 to 1.4 µm,” Phys. Status Solidi (a) 204, 839–845 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

S. Hull, “Superionics crystal structures and conduction processes,” Rep. Prog. Phys. 67, 1233–1314 (2004).
[CrossRef]

Other (5)

K. Driesen, V.K. Tikhomirov, C. Görller-Walrand, V.D. Rodríguez, and A.B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88, art.073111 (2006).
[CrossRef]

C. Görller-Walrand, K. Binnemans, and K.A. Gschneider, and L. Eyring, ed. (North-Holland, Amsterdam, 1996). v.23, p.121.

E. Desurvire, Erbium-doped Fibre Amplifiers: Materials, Devices and Applications. (Wiley, New York, 1994).

P.C. Becker, N.A. Olsson, and J.R. Simpson, Erbium-doped Fibre Amplifiers: Fundamentals and Technology, (Academic, San Diego, 1999).

S. Sudo (Ed.), Optical Fibre Amplifiers: Materials, Devices, and Applications. (Artech House Inc., Boston, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

a) Energy level diagram of the Tm3+, Yb3+ and Er3+. The excitation and emission transitions of interest are indicated by arrows, respectively. b) Absorbance spectra of the GC (thick line) and precursor glass (thin line) at room temperature; some absorption transitions are postsigned.

Fig. 2.
Fig. 2.

a) room temperature emission spectra of the Yb3+-Er3+-Tm3+ co-doped GC (thick solid line) and precursor glass (thin solid line) excited at 900 nm. b) emission spectra of the Yb3+-Er3+-Tm3+ co-doped GC at 77 K excited at 900 nm (into Yb3+ absorption band, dot line), 522 nm (into Er3+ absorption band, thick line) and 463 nm (into Tm3+ absorption band, thin solid line).

Fig. 3.
Fig. 3.

Excitation spectra for the emission bands of the Er3+, 4I13/24I15/2 transition at 1505 nm (thick line) and of the Tm3+, 3F43H6 transition at 1640 nm (thin line) in GC (a) and precursor glass (b).

Tables (1)

Tables Icon

Table. 1. Lifetime of the energy levels of the Er3+ and Tm3+ at room temperature and at 77 K, where indicated, in 3.5 mol% (Yb3+-Er3+-Tm3+) co-doped GC and precursor glass, and in single, 3.5 mol% Er3+ and Tm3+-doped GC and precursor glass.

Metrics