Abstract

Broadband nanowire-grid polarizers were designed and numerically simulated using the finite difference time domain (FDTD) method. Using a broadband stimulation source, optical properties of the polarizers were analyzed in the ultraviolet (UV)-visible-near infrared (NIR) regions. Specifically, the extinction ratios and optical transmittances of transverse magnetic (TM) and transverse electric (TE) modes were characterized for different metal materials and geometrical parameters including wire-grid periods, metal-wire fill ratios, and spacing between wire-grid layers. Based on the simulation results, an extra broadband polarizer with an average extinction ratio higher than 70 dB and transmission efficiency over 64% in the range of 0.3 to 5 µm was proposed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).
  2. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian, "Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices,’’ Appl. Opt. 31, 5431 (1992), http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-26-5431.
    [CrossRef]
  3. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, ‘‘Compact magneto-optical disk for coded data storage,’’ Appl. Opt. 25, 483 (1986), http://www.opticsinfobase.org/abstract.cfm?URI=ao-25-4-483.
    [CrossRef] [PubMed]
  4. P. Kunstmann and H.-J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun. 4, 166 (1971).
    [CrossRef]
  5. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-2-195.
    [CrossRef] [PubMed]
  6. E. Hecht, Optics (4th Edition, Addison Wesley, 2002), pp. 333.
  7. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
    [CrossRef]
  8. H. Tamada, T. Doumiki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the spolarization resonance effect at the 0.8-μm-wavelength band," Opt. Lett. 22, 419 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-6-419.
    [CrossRef] [PubMed]
  9. D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-8-1366.
    [CrossRef] [PubMed]
  10. B. Schnabel, E-B. Kley, and F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
    [CrossRef]
  11. L. Zhou and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett. 30, 1434 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1434.
    [CrossRef] [PubMed]
  12. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express 14, 2323 (2006).
    [CrossRef] [PubMed]
  13. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
    [CrossRef]
  14. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices, " Appl. Opt. 37, 5271 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ao-37-22-5271.
    [CrossRef]
  15. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys.,  114, 185 (1994).
    [CrossRef]
  16. P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
    [CrossRef]
  17. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985), pp. 275.

2007

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
[CrossRef]

2006

2005

2004

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

2000

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

1999

B. Schnabel, E-B. Kley, and F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

1998

1997

1994

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys.,  114, 185 (1994).
[CrossRef]

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

1992

1986

1971

P. Kunstmann and H.-J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun. 4, 166 (1971).
[CrossRef]

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys.,  114, 185 (1994).
[CrossRef]

Brubaker, J. L.

Chen, C.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Chen, L.

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Cloonan, T. J.

David, C.

Deng, J.

Deng, X.

Deng, X. G.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
[CrossRef]

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Djurisic, A. B.

Doumiki, T.

Ekinci, Y.

Elazar, J. M.

Fainman, Y.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Harms, P.

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

Herron, M. J.

Hinterlong, S. J.

Ito, M.

Kaku, T.

Kim, D.

Kley, E-B.

B. Schnabel, E-B. Kley, and F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Kunstmann, P.

P. Kunstmann and H.-J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun. 4, 166 (1971).
[CrossRef]

Lentine, A. L.

Levy, U.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Liu, F.

Liu, W.

Liu, X. M.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
[CrossRef]

Majewski, M. L.

Matsumoto, S.

McCormick, F. B.

Mittra, R.

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

Morrison, R. L.

Nakagawa, W.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Nezhad, M.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Ojima, M.

Pang, L.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Rakic, A. D.

Saito, A.

Sasian, J. M.

Schnabel, B.

B. Schnabel, E-B. Kley, and F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Sciortino, P.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
[CrossRef]

J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-2-195.
[CrossRef] [PubMed]

Sigg, H.

Solak, H. H.

Spitschan, H.-J.

P. Kunstmann and H.-J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun. 4, 166 (1971).
[CrossRef]

Sugita, Y.

Takayama, S.

Tamada, H.

Tetz, K.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Tooley, F. A. P.

Tsai, C.

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Tsunoda, Y.

Walker, S. L.

Walters, F.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
[CrossRef]

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
[CrossRef]

J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-2-195.
[CrossRef] [PubMed]

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Wyrowski, F.

B. Schnabel, E-B. Kley, and F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Yamaguchi, T.

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Zhang, W.

Zhou, L.

Appl. Opt.

Appl. Phys. Lett.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007).
[CrossRef]

IEEE Trans. Antennas Propag.

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys.,  114, 185 (1994).
[CrossRef]

Opt. Commun.

P. Kunstmann and H.-J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun. 4, 166 (1971).
[CrossRef]

Opt. Eng.

B. Schnabel, E-B. Kley, and F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).

Other

E. Hecht, Optics (4th Edition, Addison Wesley, 2002), pp. 333.

D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985), pp. 275.

Supplementary Material (2)

» Media 1: MPG (2186 KB)     
» Media 2: MPG (1134 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

The structure of the nanowire-grid polarizer used in simulation. t is the grid thickness; w is the wire width; and p is the grid period.

Fig. 2.
Fig. 2.

The function curves in time (a) and frequency (b) domains of the broadband simulation excitation source, which has the expression of Eq. (1).

Fig. 3.
Fig. 3.

(1.25 MB) Movie of TM mode light source passing through the Al nanowire-grid polarizer. [Media 1]

Fig. 4.
Fig. 4.

(0.8 MB). Movie of TE mode light source passing through the Al nanowire-grid polarizer. [Media 2]

Fig. 5.
Fig. 5.

The cross-section of the nanowire-grid polarizer with different metal materials.

Fig. 6.
Fig. 6.

The simulation results (transmittances of TE and TM modes, and extinction ratios) of nanowire-grid polarizers with different metal materials.

Fig. 7.
Fig. 7.

The simulation results of nanowire-grid polarizers with different grid periods. The transmittances of TE and TM modes, and extinction ratios are shown in (a), (b), and (c), respectively.

Fig. 8.
Fig. 8.

The calculation results of nanowire-grid polarizers with different fill ratios.

Fig. 9.
Fig. 9.

The structures of a polarizer with F-P like dual-layer wire grids.

Fig. 10.
Fig. 10.

The simulation results of F-P like dual-layer wire-grid polarizers with different spacing. The optical responses at different wavelengths of 300, 500, 900, 1200, 2000, and 4000 nm are shown in (a), (b), (c), (d), (e), and (f), respectively.

Fig. 11.
Fig. 11.

The structure of a proposed broadband Al nanowire-grid polarizer, which has ideal optical performance in the UV, visible, and infrared regions.

Fig. 12.
Fig. 12.

The simulation results of the proposed broadband Al nanowire-grid polarizer in a wide region from 0.3 to 5 µ m, (a) F-P like dual-layer structure; (b) single-layer structure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( t ) = exp [ 1 2 ( t t eff t w ) ] · sin ( ω t ) ,
R = ( n 1 ) 2 + κ 2 ( n + 1 ) 2 + κ 2 ,
T = T 0 2 1 + R 0 2 2 R 0 cos ( δ ) ,
δ = m 4 π nd λ + 2 φ ,

Metrics