Abstract

The control and manipulation of the mode polarization state in a single mode dielectric waveguide is of considerable significance for optical information processing utilizing the polarization state to store digital information and integrated photonic devices used for high speed signaling. Here we report on an integrated on-chip mode polarization rotation based on short metal Cu electrodes placed in close proximity to the dielectric waveguide core. Polarization mode rotation with specific rotation of 104 degrees/mm is observed for offset metallic electrodes placed diagonally along a single mode dielectric waveguide. The mechanism for the polarization rotation is shown to be directional coupling into guided surface plasmon modes at the metal corners and coupling between the guided plasmon modes. This inter-plasmon coupling gives rise to giant polarization rotation and optical vorticity (helical power flow) in the waveguide.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966, (2000).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
    [CrossRef]
  4. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  5. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  6. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991)
    [CrossRef]
  7. K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
    [CrossRef]
  8. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968).
    [CrossRef]
  9. G. I. Stegeman and J. J Burke, "Long-range surface plasmons in electrode structures," Appl. Phys. Lett. 43, 221 (1983).
    [CrossRef]
  10. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
    [CrossRef]
  11. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10848, (2000).
    [CrossRef]
  12. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
    [CrossRef]
  13. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004).
    [CrossRef] [PubMed]
  14. P. S. Davids, B. A. Block, and K. C. Cadien, "Surface plasmon polarization filtering in a single mode dielectric waveguide," Opt. Express 13, 7063 (2005).
    [CrossRef] [PubMed]
  15. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990).
    [CrossRef]
  16. A. Taflove, Computational Electromagnetics, (Artech, Boston, 1995).
  17. J. Q. Lu, and A. A. Maradudin, "Channel plasmons," Phys. Rev. B 42, 11159 (1990).
    [CrossRef]
  18. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005).
    [CrossRef] [PubMed]
  19. M. Padgett, J. Courtial, and L. Allen," Light’s orbital angular momentum," Phys. Today 35, May (2004).
  20. L. Marrucci, C. Manzo, and D. Paparo," Optical spin to orbital angular momentum conversion in inhomogenous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef] [PubMed]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo," Optical spin to orbital angular momentum conversion in inhomogenous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

2005 (4)

P. S. Davids, B. A. Block, and K. C. Cadien, "Surface plasmon polarization filtering in a single mode dielectric waveguide," Opt. Express 13, 7063 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

2004 (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004).
[CrossRef] [PubMed]

2001 (2)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966, (2000).
[CrossRef] [PubMed]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10848, (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

1990 (2)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

J. Q. Lu, and A. A. Maradudin, "Channel plasmons," Phys. Rev. B 42, 11159 (1990).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

1983 (1)

G. I. Stegeman and J. J Burke, "Long-range surface plasmons in electrode structures," Appl. Phys. Lett. 43, 221 (1983).
[CrossRef]

1968 (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968).
[CrossRef]

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004).
[CrossRef] [PubMed]

Berini, P.

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10848, (2000).
[CrossRef]

Block, B.

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

Block, B. A.

Bowen, A.

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Burke, J. J

G. I. Stegeman and J. J Burke, "Long-range surface plasmons in electrode structures," Appl. Phys. Lett. 43, 221 (1983).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Cadien, K. C.

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

P. S. Davids, B. A. Block, and K. C. Cadien, "Surface plasmon polarization filtering in a single mode dielectric waveguide," Opt. Express 13, 7063 (2005).
[CrossRef] [PubMed]

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Davids, P. S.

P. S. Davids, B. A. Block, and K. C. Cadien, "Surface plasmon polarization filtering in a single mode dielectric waveguide," Opt. Express 13, 7063 (2005).
[CrossRef] [PubMed]

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968).
[CrossRef]

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Hochberg, M.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004).
[CrossRef] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Kavanaugh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Kencke, D.

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

Krenn, J. R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Lu, J. Q.

J. Q. Lu, and A. A. Maradudin, "Channel plasmons," Phys. Rev. B 42, 11159 (1990).
[CrossRef]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo," Optical spin to orbital angular momentum conversion in inhomogenous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Maradudin, A. A.

J. Q. Lu, and A. A. Maradudin, "Channel plasmons," Phys. Rev. B 42, 11159 (1990).
[CrossRef]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo," Optical spin to orbital angular momentum conversion in inhomogenous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo," Optical spin to orbital angular momentum conversion in inhomogenous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966, (2000).
[CrossRef] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Reshotko, M.

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968).
[CrossRef]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Scherer, A.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004).
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

G. I. Stegeman and J. J Burke, "Long-range surface plasmons in electrode structures," Appl. Phys. Lett. 43, 221 (1983).
[CrossRef]

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005).
[CrossRef] [PubMed]

Walker, C.

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004).
[CrossRef] [PubMed]

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

G. I. Stegeman and J. J Burke, "Long-range surface plasmons in electrode structures," Appl. Phys. Lett. 43, 221 (1983).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001).
[CrossRef]

J. Lightwave Technol. (1)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Opt. Express (1)

Opt. Express. (1)

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (3)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10848, (2000).
[CrossRef]

J. Q. Lu, and A. A. Maradudin, "Channel plasmons," Phys. Rev. B 42, 11159 (1990).
[CrossRef]

Phys. Rev. Lett. (6)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966, (2000).
[CrossRef] [PubMed]

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo," Optical spin to orbital angular momentum conversion in inhomogenous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005).
[CrossRef]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991)
[CrossRef]

M. Padgett, J. Courtial, and L. Allen," Light’s orbital angular momentum," Phys. Today 35, May (2004).

A. Taflove, Computational Electromagnetics, (Artech, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the test chip in the polarizer analyzer experimental setup. The test chip consists of dielectric single mode Si3 N4 waveguides with Cu rotator section and integrated Cu polarizer. AB ¯ cross-section shows the polarization rotator structure consisting of a Cu electrode located near the waveguide core. CD ¯ shows the cross-section for the integratedpolarizer.

Fig. 2.
Fig. 2.

Polarized Transmission through an on-chip polarizer analyzer. The polarization rotation Cu electrode is defined by timed etch (80 second etched sample) and is approximately 60 nm above the nitride dielectric waveguide core (SEM image). The inset shows the polarized transmission on a linear scale.

Fig. 3.
Fig. 3.

Simulated Polarized transmission using Finite Difference Time Domain solution to Maxwell’s equations. The cross-section of the polarization device is shown, the nitride waveguide core is show in blue and the Cu electrode 60 nm from edge is red. The inset is the polarized transmission on a linear scale.

Fig. 4.
Fig. 4.

Upper panels show the computed electric fields in the center of the polarization rotation device of various lengths. Strong field enhancements are seen at the corners of the Cu electrodes indicating excitation of surface plasmon polaritons. Lower panel illustrates the directional coupling mechanism for the rotation of the input mode (Ey 11). (a) Input mode directional coupling into y-SPP. (b) Inter-plasmon coupling into x-SPP and back coupling into dielectric waveguide. The green arrow indicates the mode polarization and the red arrows indicates the directional coupling.

Fig. 5.
Fig. 5.

Time averaged Poynting vector streamlines. (a) A 3 micron rotator metal electrode on left side of waveguide. (b) identical structure with metal on right side of waveguide. (c) no metal case. The incident mode is Ey polarized in all cases indicated by green arrow.

Fig. 6.
Fig. 6.

Simulated polarization rotation and transmission through symmetric Cu electrode structure versus electrode offset distance for 5 micron long rotator structure. (a) Rotation angle and Ex Degree of polarization for Ex input polarization. (b) Polarized transmission for Ex and Ey input polarized mode. (c) Complex transverse field amplitudes for 100 nm Cu electrode offset sliced through center of dielectric waveguide core.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω ) = 1 i ω pl 2 γ ( ω + i γ ) + i ω pl 2 γ ω ,
k spp = ω c ε c ε m ( ω ) ε c + ε m ( ω ) = ω c ( n spp + i K spp ) ,
L = λ 2 ( n eff n spp )

Metrics