Abstract

In this report, we investigate a photonic crystal circular-shaped microcavity (removing seven air holes) sustaining whispering-gallery mode (WGM) by shifting the 12 nearest air holes according to the concept of cavity-shaping in micro-disk and micro-gear lasers. The WGM modal characteristics are investigated by three-dimensional (3D) finite-difference time-domain (FDTD) simulations. From well-fabricated devices and simulated results, we obtain and identify WGM single-mode lasing with low threshold and high measured quality factor. By inserting additional waveguides, we also investigate its uniform coupling behaviors in different waveguide-cavity-waveguide geometries in both FDTD simulations and experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  2. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004).
    [CrossRef]
  3. S. Ishii, A. Nakagawa, and T. Baba, "Modal Characteristics and Bistability in Twin Microdisk Photonic Molecule Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006).
    [CrossRef]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
    [CrossRef]
  6. H. Y. Ryu, H. G. Park, and Y. H. Lee, "Two-dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization," IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
    [CrossRef]
  7. K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
    [CrossRef]
  8. D. Chang, J. Scheuer, and A. Yariv, "Optimization of circular photonic crystal cavities: beyond coupled mode theory," Opt. Express 13, 9272-9279 (2005).
    [CrossRef] [PubMed]
  9. P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
    [CrossRef]
  10. P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006).
    [CrossRef]
  11. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004).
    [CrossRef] [PubMed]
  12. M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
    [CrossRef]
  13. K. P. Huy, A Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
    [CrossRef]
  14. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
    [CrossRef]
  15. M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
    [CrossRef]
  16. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
    [CrossRef]
  17. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
    [CrossRef]
  18. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
    [CrossRef]
  19. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and E. H. Lee, "Photonic crystal power-splitter based on directional coupling," Opt. Express 12, 3599-3604 (2004).
    [CrossRef] [PubMed]
  20. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express,  12, 1551 (2004).
    [CrossRef] [PubMed]
  21. G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide," Opt. Express 12, 6624 (2004).
    [CrossRef] [PubMed]

2007 (2)

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

2006 (3)

P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006).
[CrossRef]

S. Ishii, A. Nakagawa, and T. Baba, "Modal Characteristics and Bistability in Twin Microdisk Photonic Molecule Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006).
[CrossRef]

2005 (2)

D. Chang, J. Scheuer, and A. Yariv, "Optimization of circular photonic crystal cavities: beyond coupled mode theory," Opt. Express 13, 9272-9279 (2005).
[CrossRef] [PubMed]

K. P. Huy, A Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

2004 (6)

2003 (3)

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

2002 (2)

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

H. Y. Ryu, H. G. Park, and Y. H. Lee, "Two-dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization," IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

2001 (1)

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

1999 (2)

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Baba, T.

S. Ishii, A. Nakagawa, and T. Baba, "Modal Characteristics and Bistability in Twin Microdisk Photonic Molecule Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006).
[CrossRef]

K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Benech, P.

K. P. Huy, A Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

Chang, D.

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Choi, S. J.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004).
[CrossRef]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004).
[CrossRef]

Dapkus, P. D.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Englund, D.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Fan, S.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Faraon, A.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Fujita, M.

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Huy, K. P.

K. P. Huy, A Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

Ishii, S.

S. Ishii, A. Nakagawa, and T. Baba, "Modal Characteristics and Bistability in Twin Microdisk Photonic Molecule Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006).
[CrossRef]

Jeong, K. Y.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Kim, G. H.

Kim, H. J.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, S. B.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

Kuo, H. C.

P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Kuramochi, E.

Lee, E. H.

Lee, H. S.

Lee, P. T.

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006).
[CrossRef]

P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
[CrossRef]

Lee, S. G.

Lee, Y. H.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004).
[CrossRef] [PubMed]

G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide," Opt. Express 12, 6624 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, H. G. Park, and Y. H. Lee, "Two-dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization," IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

Lu, T. C.

P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006).
[CrossRef]

Lu, T. W.

P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006).
[CrossRef]

Mekis, A.

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Mitsugi, S.

Moon, K. M.

Morand, A

K. P. Huy, A Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

Nakagawa, A.

S. Ishii, A. Nakagawa, and T. Baba, "Modal Characteristics and Bistability in Twin Microdisk Photonic Molecule Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Notomi, M.

Nozaki, K.

K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, B. H. O, S. G.

Park, H. G.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

H. Y. Ryu, H. G. Park, and Y. H. Lee, "Two-dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization," IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

Park, I.

Peng, Z.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004).
[CrossRef]

Ryu, H.

Ryu, H. Y.

H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004).
[CrossRef] [PubMed]

H. Y. Ryu, H. G. Park, and Y. H. Lee, "Two-dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization," IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

Sano, D.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
[CrossRef]

Scheuer, J.

Seo, M. K.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

Shinya, A.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

Tsai, F. M.

P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006).
[CrossRef]

Vuckovic, J.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Xu, Y.

Yang, J. K.

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

Yang, Q.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004).
[CrossRef]

Yariv, A.

Appl. Phys. Lett. (8)

K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
[CrossRef]

P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006).
[CrossRef]

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007).
[CrossRef]

S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. P. Huy, A Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Y. Ryu, H. G. Park, and Y. H. Lee, "Two-dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization," IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

S. Ishii, A. Nakagawa, and T. Baba, "Modal Characteristics and Bistability in Twin Microdisk Photonic Molecule Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003).
[CrossRef]

Nature (London) (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scheme and cavity design of PC CD2 microcavity. The PC patterns are defined and fabricated on the dielectric slab consisting of InGaAsP MQWs with thickness of 220nm and refractive index of 3.4. According to the theory in micro-gear lasers, the cavity is modified from PC D2 microcavity to PC CD2 microcavity by shifting the 12 nearest air holes inward or outward to make the spacing between air holes equal to one lattice constant.

Fig. 2.
Fig. 2.

3D FDTD simulations of WGM with azimuthal number six. (a) Electric-field distribution in the x-z plane. (b) Electric-field distribution in the x-y plane. (c) Magnetic-field distribution in the x-z plane. (d) WGM electric-field distribution in k-space by Fourier transformation.

Fig. 3.
Fig. 3.

(a). Plot of normalized frequency versus PC r/a ratio of the resonance modes in PC CD2 microcavity by 3D FDTD simulations. The hollow circles, squares, and triangles denote the measured lasing actions from devices with lattice constants from 490 to 510 nm. (b). The measured resonance spectrum from well-fabricated device with lattice constant 500 nm and r/a ratio ~0.33. We can identify each resonance mode including WGM lasing mode by comparing with the simulated results in (a). The gain region of MQWs is also indicated in the figure.

Fig. 4.
Fig. 4.

(a). Top-view and (b) side-view SEM pictures of fabricated PC CD2 microcavity lasers. The fabricated lattice constant and r/a ratio are 500 nm and ~0.33.

Fig. 5.
Fig. 5.

(a). Typical L-L curve of PC CD2 microcavity laser. The threshold can be estimated as 0.24 mW from the curve. The upper inset also shows the spectrum near threshold and the measured Q-factor can be estimated as 7700 from the linewidth of 0.2 nm. The SMSR is also estimated as 18dB from the lower inset. (b) Typical lasing spectrum at 1535.7 nm.

Fig. 6.
Fig. 6.

(a). Scheme of waveguide-cavity-waveguide coupling system based on PC CD2 microcavity with different waveguide geometries. (Different output ports, numbered as port 1–10) (b) Transmission spectrum and (c) propagating field distribution of A-6 type coupler with r/a ratio of 0.36. The transmission is over 60%. The inset in (b) also shows the optimization of transmission versus r/a ratio. The maximum transmission appears when r/a ratio is equal to 0.31. (d) Scheme of A-4-8 coupler with power splitter function and (e) its propagating field distribution. The output powers of port 4 and port 8 are almost the same with 42% transmission.

Fig. 7.
Fig. 7.

(a)–(c) SEM pictures and measured lasing spectra near threshold of PC CD2 microcavities with inserted waveguides along three different directions. The measured linewidths all degrade to 0.25 nm.

Tables (1)

Tables Icon

Table 1. Transmissions and wavelengths of different waveguide-cavity-waveguide geometries named A-1 type to A- 10 type.

Metrics