Abstract

Accurate direct fabrication of diffractive gratings is an important task in optical engineering. Several methods have been reported to realize optical diffractive gratings on a silicon substrate using focused ion beams. A method, however, is necessary to improve the overall shape and dimensional accuracy. In this paper a simulation-based technique is presented taking into account redeposition fluxes. First, the influence of the process parameters on the blazed grating structure is studied experimentally. Then the process parameters for a structure with a planar sidewall, a maximum depth of 200 nm, and an opening width of 350 nm are determined. The approach is finally verified by comparing the designed with the fabricated structure. The method may be readily extended to various micro/nano structures in optics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Brodie and J. J. Muray, The Physics of Micro/Nano Fabrication, (SRI International, 1992).
  2. R. E. Fisher and B. T. Caleb, Optical System Design (McGraw-Hill, 2000).
  3. Y. Fu, N. K. A. Bryan and W. Zhou, "Quasi-dirct writing of diffractive structures with a focused ion beam," Opt. Express 12, 1803-1809 (2004).
    [CrossRef] [PubMed]
  4. Y. Fu and N. K. A. Bryan, "Spontaneously generated sinusoidal like structures on Ti-Ni thin film under focused ion-beam bombardment," Opt. Express 12, 3707-3712 (2004).
    [CrossRef] [PubMed]
  5. Y. Fu, N. K. A. Bryan and W. Zhou, "Self-organized formation of a blazed-grating-like structure on Si(100) induced by focused ion-beam scanning," Opt. Express 12, 227-233 (2004).
    [CrossRef] [PubMed]
  6. Y. Fu, N. K. A. Bryan, "Fabrication of three-dimensional microstructures by two-dimensional slice by slice approaching via focused ion beam milling," J. Vac. Sci. Technol. B22, 1672-1678 (2004).
  7. D. P. Adams, M. J. Vasile, "Accurate focused ion beam sculpting of silicon using a variable pixel dwell time approach," J. Vac. Sci. Technol. B24, 836-844 (2006).
  8. R. M. Bradley and J. M. E. Harper, "Theory of ripple topography induced by ion bombardment," J. Vac. Sci. Technol. A6, 2390-2395 (1988).
  9. H. B. Kim, G. Hobler, A. Lugstein and E. Bertagnolli, "Simulation of ion beam induced micro/nano fabrication," J. Micromach. Microeng. 17, 1178-1183 (2007).
    [CrossRef]
  10. H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
    [CrossRef]
  11. H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
    [CrossRef] [PubMed]
  12. D. Santamore, K. Edinger, J Orloff and J. Melngailis, "focused ion beam yield change as a function of scan speed," J. Vac. Sic. Technol. B15, 2346-2349 (1997).
    [CrossRef]

2007

H. B. Kim, G. Hobler, A. Lugstein and E. Bertagnolli, "Simulation of ion beam induced micro/nano fabrication," J. Micromach. Microeng. 17, 1178-1183 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
[CrossRef] [PubMed]

2006

D. P. Adams, M. J. Vasile, "Accurate focused ion beam sculpting of silicon using a variable pixel dwell time approach," J. Vac. Sci. Technol. B24, 836-844 (2006).

2004

1997

D. Santamore, K. Edinger, J Orloff and J. Melngailis, "focused ion beam yield change as a function of scan speed," J. Vac. Sic. Technol. B15, 2346-2349 (1997).
[CrossRef]

1988

R. M. Bradley and J. M. E. Harper, "Theory of ripple topography induced by ion bombardment," J. Vac. Sci. Technol. A6, 2390-2395 (1988).

Adams, D. P.

D. P. Adams, M. J. Vasile, "Accurate focused ion beam sculpting of silicon using a variable pixel dwell time approach," J. Vac. Sci. Technol. B24, 836-844 (2006).

Bertagnolli, E.

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
[CrossRef] [PubMed]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Lugstein and E. Bertagnolli, "Simulation of ion beam induced micro/nano fabrication," J. Micromach. Microeng. 17, 1178-1183 (2007).
[CrossRef]

Bradley, R. M.

R. M. Bradley and J. M. E. Harper, "Theory of ripple topography induced by ion bombardment," J. Vac. Sci. Technol. A6, 2390-2395 (1988).

Bryan, N. K. A.

Edinger, K.

D. Santamore, K. Edinger, J Orloff and J. Melngailis, "focused ion beam yield change as a function of scan speed," J. Vac. Sic. Technol. B15, 2346-2349 (1997).
[CrossRef]

Fu, Y.

Harper, J. M. E.

R. M. Bradley and J. M. E. Harper, "Theory of ripple topography induced by ion bombardment," J. Vac. Sci. Technol. A6, 2390-2395 (1988).

Hobler, G.

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
[CrossRef] [PubMed]

H. B. Kim, G. Hobler, A. Lugstein and E. Bertagnolli, "Simulation of ion beam induced micro/nano fabrication," J. Micromach. Microeng. 17, 1178-1183 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
[CrossRef]

Kim, H. B.

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Lugstein and E. Bertagnolli, "Simulation of ion beam induced micro/nano fabrication," J. Micromach. Microeng. 17, 1178-1183 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
[CrossRef] [PubMed]

Lugstein, A.

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
[CrossRef] [PubMed]

H. B. Kim, G. Hobler, A. Lugstein and E. Bertagnolli, "Simulation of ion beam induced micro/nano fabrication," J. Micromach. Microeng. 17, 1178-1183 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
[CrossRef]

Melngailis, J.

D. Santamore, K. Edinger, J Orloff and J. Melngailis, "focused ion beam yield change as a function of scan speed," J. Vac. Sic. Technol. B15, 2346-2349 (1997).
[CrossRef]

Orloff, J

D. Santamore, K. Edinger, J Orloff and J. Melngailis, "focused ion beam yield change as a function of scan speed," J. Vac. Sic. Technol. B15, 2346-2349 (1997).
[CrossRef]

Santamore, D.

D. Santamore, K. Edinger, J Orloff and J. Melngailis, "focused ion beam yield change as a function of scan speed," J. Vac. Sic. Technol. B15, 2346-2349 (1997).
[CrossRef]

Steiger, A.

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
[CrossRef] [PubMed]

Vasile, M. J.

D. P. Adams, M. J. Vasile, "Accurate focused ion beam sculpting of silicon using a variable pixel dwell time approach," J. Vac. Sci. Technol. B24, 836-844 (2006).

Zhou, W.

J. Micromach. Microeng.

H. B. Kim, G. Hobler, A. Lugstein and E. Bertagnolli, "Simulation of ion beam induced micro/nano fabrication," J. Micromach. Microeng. 17, 1178-1183 (2007).
[CrossRef]

J. Vac. Sci. Technol.

Y. Fu, N. K. A. Bryan, "Fabrication of three-dimensional microstructures by two-dimensional slice by slice approaching via focused ion beam milling," J. Vac. Sci. Technol. B22, 1672-1678 (2004).

D. P. Adams, M. J. Vasile, "Accurate focused ion beam sculpting of silicon using a variable pixel dwell time approach," J. Vac. Sci. Technol. B24, 836-844 (2006).

R. M. Bradley and J. M. E. Harper, "Theory of ripple topography induced by ion bombardment," J. Vac. Sci. Technol. A6, 2390-2395 (1988).

J. Vac. Sic. Technol.

D. Santamore, K. Edinger, J Orloff and J. Melngailis, "focused ion beam yield change as a function of scan speed," J. Vac. Sic. Technol. B15, 2346-2349 (1997).
[CrossRef]

Nanotechnology

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Full three-dimensional simulation of focused ion beam micro/nanofabrication," Nanotechnology 18, 245303 (2007).
[CrossRef]

H. B. Kim, G. Hobler, A. Steiger, A. Lugstein and E. Bertagnolli, "Level set approach for the simulation of focused ion beam processing on the micro/nano scale," Nanotechnology 18, 265307 (2007).
[CrossRef] [PubMed]

Opt. Express

Other

I. Brodie and J. J. Muray, The Physics of Micro/Nano Fabrication, (SRI International, 1992).

R. E. Fisher and B. T. Caleb, Optical System Design (McGraw-Hill, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic illustration of scanning strategy (a) and design parameters (b).

Fig. 2.
Fig. 2.

Fabricated Blazed grating structures

Fig. 3.
Fig. 3.

Simulation results of the blazed grating formation. (a) represents the sidewall nonplanarity and (b) represents the maximum depth of the structure. The thick solid line in (a) represents the Isoline curve of planar sidewall.

Fig. 4.
Fig. 4.

The graph of dwell time vs. number of lines extracted from Fig. 3(a) along the isoline curve of zero sidewall nonplanarity. Experimental results of (a)–(d) are shown in Fig. 6. Asterisk (*) represents the adjusted value due to the non integral number of lines.

Fig. 5.
Fig. 5.

Experimental results of the blazed grating formation. Each image (a)–(d) corresponds to the points depicted in Fig. 4.

Fig. 6.
Fig. 6.

The graph of dwell time vs. maximum depth of the structure. The indication number (1) and (2) represent the dwell time determination at which the maximum depth is 200 nm.

Fig. 7.
Fig. 7.

Experimental (a) and simulation (b) results for the case (1). The process condition were 8 pixels, 34 nm and 11 ms for the number of scan lines, pixel spacing and pixel dwell time, respectively

Tables (1)

Tables Icon

Table 1. Process parameters and experimental range

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w = ( n 1 ) p s + d f + α d

Metrics