Abstract

Dynamics features of high repetition rate continuously pumped solid-state regenerative amplifiers were studied numerically. A space independent rate equations and discrete-time dynamical system approach were used for system state evolution analysis. Regular single-energy operation, quasi-periodic pulsing and chaotic behavior regions are distinguished in space of control parameters. Diagrams of dynamical regimes comprehensively exhibiting operation features of the system are presented. Seed energy is shown to be an important parameter determining the stability space. Conditions of stable operation are described quantitatively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer, 1996), Chap. 9.4.2.
  2. S. Forget, F. Balembois, P. Georges, and P. Devilder, "A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals," Appl. Phys. B 75,481 (2002).
    [CrossRef]
  3. V. Kolev, M. Lederer, B. Luther-Davies, and A. Rode, "Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator," Opt. Lett. 28,1275 (2003).
    [CrossRef] [PubMed]
  4. D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
    [CrossRef]
  5. G. Raciukaitis, M. Grishin, R. Danielius, J. Pocius, L. Giniūnas, "High repetition rate ps- and fs- DPSS lasers for micromachining", ICALEO 2006 Proceedings on CD-ROM, (Laser Institute of America, 2006), 99. http://www.laserinstitute.org/store/CONF/599
  6. S. Valling, T. Fordell, and A. M. Lindberg, "Experimental and numerical intensity time series of an optically injected solid state laser," Opt. Commun. 254,282 (2005).
    [CrossRef]
  7. J. Dörring, A. Killi, U. Morgner, A. Lang, M. Lederer, and D. Kopf, "Period doubling and deterministic chaos in continuously pumped regenerative amplifiers," Opt. Express 12, 1759 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1759
    [CrossRef] [PubMed]
  8. Orazio Svelto, Principles of Lasers (Plenum Press, 1998), Chap. 7.2.
  9. K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996), Chap. 1.

2005

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, "Experimental and numerical intensity time series of an optically injected solid state laser," Opt. Commun. 254,282 (2005).
[CrossRef]

2004

2003

2002

S. Forget, F. Balembois, P. Georges, and P. Devilder, "A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals," Appl. Phys. B 75,481 (2002).
[CrossRef]

Balembois, F.

S. Forget, F. Balembois, P. Georges, and P. Devilder, "A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals," Appl. Phys. B 75,481 (2002).
[CrossRef]

Bevertt, A.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Butze, F.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Devilder, P.

S. Forget, F. Balembois, P. Georges, and P. Devilder, "A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals," Appl. Phys. B 75,481 (2002).
[CrossRef]

Dörring, J.

Fordell, T.

S. Valling, T. Fordell, and A. M. Lindberg, "Experimental and numerical intensity time series of an optically injected solid state laser," Opt. Commun. 254,282 (2005).
[CrossRef]

Forget, S.

S. Forget, F. Balembois, P. Georges, and P. Devilder, "A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals," Appl. Phys. B 75,481 (2002).
[CrossRef]

Geisen, A.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Georges, P.

S. Forget, F. Balembois, P. Georges, and P. Devilder, "A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals," Appl. Phys. B 75,481 (2002).
[CrossRef]

Haüssermann, J.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Killi, A.

Kolev, V.

Kopf, D.

Lang, A.

Lederer, M.

Leitner, M.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Lindberg, A. M.

S. Valling, T. Fordell, and A. M. Lindberg, "Experimental and numerical intensity time series of an optically injected solid state laser," Opt. Commun. 254,282 (2005).
[CrossRef]

Luther-Davies, B.

Morgner, U.

Nickel, D.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Rode, A.

Stolzenburg, C.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Valling, S.

S. Valling, T. Fordell, and A. M. Lindberg, "Experimental and numerical intensity time series of an optically injected solid state laser," Opt. Commun. 254,282 (2005).
[CrossRef]

Appl. Phys. B

S. Forget, F. Balembois, P. Georges, and P. Devilder, "A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals," Appl. Phys. B 75,481 (2002).
[CrossRef]

Opt. Commun.

S. Valling, T. Fordell, and A. M. Lindberg, "Experimental and numerical intensity time series of an optically injected solid state laser," Opt. Commun. 254,282 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

D. Nickel, C. Stolzenburg, A. Bevertt, A. Geisen, J. Haüssermann, F. Butze, and M. Leitner, "200 kHz electro-optic switch for ultrafast laser systems," Rev. Sci. Instrum. 76,033111 (2005).
[CrossRef]

Other

G. Raciukaitis, M. Grishin, R. Danielius, J. Pocius, L. Giniūnas, "High repetition rate ps- and fs- DPSS lasers for micromachining", ICALEO 2006 Proceedings on CD-ROM, (Laser Institute of America, 2006), 99. http://www.laserinstitute.org/store/CONF/599

W. Koechner, Solid-State Laser Engineering (Springer, 1996), Chap. 9.4.2.

Orazio Svelto, Principles of Lasers (Plenum Press, 1998), Chap. 7.2.

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems (Springer, 1996), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical layout of the solid-state diode pumped regenerative amplifier.

Fig. 2.
Fig. 2.

Graphical presentation of the orbits in state space. Blue and red curves are right and left hand parts of Eq. (13), respectively. Transition to the stable (attracting) fixed point (a) at εs =3×10-7; τ=18.0; T1/T=3.0. Period-4T orbit (b) at εs =10-10; τ=42.0; T1/T=2.56.

Fig. 3.
Fig. 3.

Diagrams of RA dynamical regimes in parameter space for different seed energy: εs =10-10 (a); εs =2.5×10-7 (b); εs =3×10-7 (c); εs =1.3×10-4 (d). Green, red, and black lines correspond to stored energy extraction efficiency of 50 %, 70 %, and 90 %, respectively.

Fig. 4.
Fig. 4.

Stability diagrams in system parameters space (normalized repetition rate - effective round trip number) for different seed energies.

Tables (2)

Tables Icon

Table 1. Legend of System State Evolution in Discrete Time Scale

Tables Icon

Table 2. Dynamic Regimes Realizable for Corresponding Seed Energy Range

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N dt = R p σ c V ϕ N N T 1
d ϕ dt = ( σ c L a A a V N 1 T c ) ϕ ,
dg ( τ ) d τ = ε ( τ ) g ( τ ) + 1 g ( τ ) τ 1
( τ ) d τ = ε ( τ ) g ( τ ) ε ( τ ) τ c .
dg ( τ ) d τ = 1 g ( τ ) τ 1 .
g p = 1 ( 1 g 1 ) exp ( T T 1 ) .
dg ( τ ) d τ = ε ( τ ) g ( τ )
d ε ( τ ) d τ = ε ( τ ) g ( τ ) .
g a = g 0 + ε s 1 + ε s g 0 exp ( g 0 τ )
ε = g 0 + ε s 1 + g 0 ε s exp ( g 0 τ ) .
g Σ ( g 0 ) = 1 [ 1 g 0 + ε s 1 + ε s g 0 exp ( g 0 τ ) ] exp ( T T 1 ) .
1 ( 1 g 0 ) exp ( T T 1 ) = g 1 = g 0 + ε s 1 + ε s g 0 exp ( g 0 τ ) .

Metrics