Abstract

We present an experimental and theoretical investigation of the non-linear multimode dynamics of external–cavity VCSELs emitting at 1 and 2.3 μm. We account for the stable single–frequency and linearly polarized emission by these laser sources, even in the presence of quantum noise and non-linear mode interactions originating from Four–Wave–Mixing via population pulsations in the quantum-wells. This fact is a consequence of the mode antiphase dynamics. Thanks to the high-Q external cavity configuration, the laser dynamics fall into the oscillation-relaxation-free class-A regime. The characteristic time to achieve single mode emission is ~1 ms for a 15 mm long cavity with an antireflection coated structure and no spectral filter, as for an “ideal” homogeneous gain laser. The side mode suppression ratio is as high as 40 dB, close to the quantum limit. The laser linewidth is at the quantum limit, and is ~1 Hz at 1mW output. An experimental value <20 kHz has been established. Under standard conditions, without spectral filtering, the optimum cavity length for highly coherent single mode operation is expected in the range 5 to 30 mm. Finally, for cavity lengths typically shorter than 5 mm, we rather have an “ideal” homogeneous gain class-B laser, exhibiting oscillation-relaxation of the intensity in the 0.1 GHz range. These properties contrast with the intrinsic strongly non-linear dynamics of conventional semiconductor lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Méndez, "2-2.7 μm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External-cavity VCSELs, DFB," Proc. SPIE Photonics Europe, Semiconductor lasers and laser dynamics pp. 6184-23 (2006).
  2. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
    [CrossRef]
  3. A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
    [CrossRef]
  4. M. Holm, D. Burns, and A. Ferguson, "Actively Stabilized Single-Frequency Vertical-External-Cavity AlGaAs Laser," IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
    [CrossRef]
  5. A. Garnache, A. Kachanov, F. Stoeckel, and R. Houdre, "Diode-pumped broadband Vertical-External-Cavity Surface-Emitting semiconductor Laser. Application to high sensitivity intracavity laser absorption spectroscopy," J. Opt. Soc. Am. B 17, 1589 (2000).
    [CrossRef]
  6. S. Kovalenko, S. Semin, and D. Toptygin, "Influence of the Raman mode interaction on the lasing kinetics of a wide-band ring laser," Sov. J. Quantum Electron. 21(4), 407-411 (1991).
    [CrossRef]
  7. L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004).
    [CrossRef]
  8. M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).
  9. S. Hodges, M. Munroe, J. Cooper, and M. Raymer, "Multimode laser model with coupled cavities and quantum noise," J. Opt. Soc. Am. B 14, 191-199 (1997).
    [CrossRef]
  10. A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
    [CrossRef]
  11. A. Garnache, "Study and realization of new types of near-IR lasers for high sensitivity intra-cavity-laser-absorption-spectroscopy application. Strongly multimode laser dynamics." Ph.D. thesis, Joseph Fourier University, Grenoble (1999).
  12. A. Garnache, A. Bouchier, E. K. Attarbaoui, A. Ouvrard, L. Cerutti, and E. Cerda-M endez, "Sb-based type-I Quantum-Well Gain and Quantum Efficiency study. Application to 2.3 μm VCSELs," Proc. EOS annual meeting, Paris, Photonic Devices in Space (TOM 5) (2006).
  13. S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).
  14. M. Yamada, "Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers," J. Appl. Phys. 66, 81-89 (1989).
    [CrossRef]
  15. L. A. Coldren and S. W. Corzine, Diode lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  16. M. Grundmann, "How a quantum-dot laser turns on," Appl. Phys. Lett. 77, 1428-1430 (2000).
    [CrossRef]
  17. P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995).
    [CrossRef]
  18. S. A. Kovalenko, "Quantum intensity fluctuations in multimode cw lasers and maximum sensitivity of intracavity laser spectroscopy," Sov. J. Quantum Electron. 11, 759-762 (1981).
    [CrossRef]

2006 (1)

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

2005 (1)

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

2004 (1)

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004).
[CrossRef]

2003 (1)

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

2002 (1)

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

2000 (2)

1999 (1)

M. Holm, D. Burns, and A. Ferguson, "Actively Stabilized Single-Frequency Vertical-External-Cavity AlGaAs Laser," IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

1997 (1)

1995 (1)

P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995).
[CrossRef]

1992 (1)

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).

1991 (1)

S. Kovalenko, S. Semin, and D. Toptygin, "Influence of the Raman mode interaction on the lasing kinetics of a wide-band ring laser," Sov. J. Quantum Electron. 21(4), 407-411 (1991).
[CrossRef]

1989 (1)

M. Yamada, "Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers," J. Appl. Phys. 66, 81-89 (1989).
[CrossRef]

1981 (1)

S. A. Kovalenko, "Quantum intensity fluctuations in multimode cw lasers and maximum sensitivity of intracavity laser spectroscopy," Sov. J. Quantum Electron. 11, 759-762 (1981).
[CrossRef]

Albrecht, T.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Brick, P.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Burns, D.

M. Holm, D. Burns, and A. Ferguson, "Actively Stabilized Single-Frequency Vertical-External-Cavity AlGaAs Laser," IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

Cerutti, L.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004).
[CrossRef]

Cooper, J.

Dion, J.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

Domenech, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

Ferguson, A.

M. Holm, D. Burns, and A. Ferguson, "Actively Stabilized Single-Frequency Vertical-External-Cavity AlGaAs Laser," IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

Garnache, A.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004).
[CrossRef]

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

A. Garnache, A. Kachanov, F. Stoeckel, and R. Houdre, "Diode-pumped broadband Vertical-External-Cavity Surface-Emitting semiconductor Laser. Application to high sensitivity intracavity laser absorption spectroscopy," J. Opt. Soc. Am. B 17, 1589 (2000).
[CrossRef]

Genty, F.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004).
[CrossRef]

Georges, P.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

Grundmann, M.

M. Grundmann, "How a quantum-dot laser turns on," Appl. Phys. Lett. 77, 1428-1430 (2000).
[CrossRef]

Hodges, S.

Holm, M.

M. Holm, D. Burns, and A. Ferguson, "Actively Stabilized Single-Frequency Vertical-External-Cavity AlGaAs Laser," IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

Hoogland, S.

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

Houdre, R.

Jacquemet, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

Kachanov, A.

Kachanov, A. A.

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).

Khandokhin, P. A.

P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995).
[CrossRef]

Khanin, Y. I.

P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995).
[CrossRef]

Koryukin, I. V.

P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995).
[CrossRef]

Kovalenko, S.

S. Kovalenko, S. Semin, and D. Toptygin, "Influence of the Raman mode interaction on the lasing kinetics of a wide-band ring laser," Sov. J. Quantum Electron. 21(4), 407-411 (1991).
[CrossRef]

Kovalenko, S. A.

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).

S. A. Kovalenko, "Quantum intensity fluctuations in multimode cw lasers and maximum sensitivity of intracavity laser spectroscopy," Sov. J. Quantum Electron. 11, 759-762 (1981).
[CrossRef]

Lucas-Leclin, G.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

Luft, J.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Lutgen, S.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Mandel, P.

P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995).
[CrossRef]

Munroe, M.

Ouvrard, A.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004).
[CrossRef]

Raymer, M.

Reill, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Roberts, J.

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

Romanini, D.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

Sagnes, I.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

Saint-Girons, G.

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

Semin, S.

S. Kovalenko, S. Semin, and D. Toptygin, "Influence of the Raman mode interaction on the lasing kinetics of a wide-band ring laser," Sov. J. Quantum Electron. 21(4), 407-411 (1991).
[CrossRef]

Spath, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Stoeckel, F.

Strassner, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

Sviridenkov, E. A.

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).

Toptygin, D.

S. Kovalenko, S. Semin, and D. Toptygin, "Influence of the Raman mode interaction on the lasing kinetics of a wide-band ring laser," Sov. J. Quantum Electron. 21(4), 407-411 (1991).
[CrossRef]

Tropper, A.

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

Vinogradov, S. E.

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).

Yamada, M.

M. Yamada, "Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers," J. Appl. Phys. 66, 81-89 (1989).
[CrossRef]

Appl. Phys. B (1)

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).

Appl. Phys. Lett. (3)

A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

M. Grundmann, "How a quantum-dot laser turns on," Appl. Phys. Lett. 77, 1428-1430 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

M. Holm, D. Burns, and A. Ferguson, "Actively Stabilized Single-Frequency Vertical-External-Cavity AlGaAs Laser," IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. Yamada, "Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers," J. Appl. Phys. 66, 81-89 (1989).
[CrossRef]

J. Cryst. Growth (1)

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).

Sov. J. Quantum Electron. (2)

S. A. Kovalenko, "Quantum intensity fluctuations in multimode cw lasers and maximum sensitivity of intracavity laser spectroscopy," Sov. J. Quantum Electron. 11, 759-762 (1981).
[CrossRef]

S. Kovalenko, S. Semin, and D. Toptygin, "Influence of the Raman mode interaction on the lasing kinetics of a wide-band ring laser," Sov. J. Quantum Electron. 21(4), 407-411 (1991).
[CrossRef]

Other (4)

A. Garnache, "Study and realization of new types of near-IR lasers for high sensitivity intra-cavity-laser-absorption-spectroscopy application. Strongly multimode laser dynamics." Ph.D. thesis, Joseph Fourier University, Grenoble (1999).

A. Garnache, A. Bouchier, E. K. Attarbaoui, A. Ouvrard, L. Cerutti, and E. Cerda-M endez, "Sb-based type-I Quantum-Well Gain and Quantum Efficiency study. Application to 2.3 μm VCSELs," Proc. EOS annual meeting, Paris, Photonic Devices in Space (TOM 5) (2006).

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Méndez, "2-2.7 μm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External-cavity VCSELs, DFB," Proc. SPIE Photonics Europe, Semiconductor lasers and laser dynamics pp. 6184-23 (2006).

L. A. Coldren and S. W. Corzine, Diode lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Single-frequency VeCSEL spectrum at high resolution for a pump rate η ≃ 4 above threshold, using a ~ 15mm long plane-concave cavity, a gold coated wedged substrate, and a SiN antireflection coating on top of the structure. Gray lines show the mode position.

Fig. 2.
Fig. 2.

Long-term stability of single mode operation for a 25mm long VeCSEL at 1 µm and 10mW output (substrate without wedge).

Fig. 3.
Fig. 3.

(a) Setup for spectro-temporal laser measurements. OC: Output Coupler, AOM: Acousto Optic-Modulator, PD: InGaAs photodiode (1MHz cutoff frequency). tg : time delay. Δt: deflection time duration. (b) Transient evolution of the pump and laser intensity (measured on the PD) at the startup for L=15mm. The slight transient decay on the laser intensity is due to the temperature increase at the onset of pumping.

Fig. 4.
Fig. 4.

Spectral width Δσ (FWHM) versus tg for a 15mm long cavity at different pump rates η above threshold. The 2.3mm VeCSEL sample had a gold coated wedged substrate. The thermal jitter limit (dot line) in quasi-CWis set by the pulse to pulse pump fluctuations. In CW, the laser spectral width is set by the monochromator resolution (10GHz, dash-line). (inset) Laser spectra at tg =40 µs at two pump rates.

Fig. 5.
Fig. 5.

Spectro-temporal dynamics of mode amplitudes after the onset of pumping for a 15mm long VeCSEL for η=1.7 (top) with quantum noise and without non-linear mode interactions (i.e. an “ideal” homogeneous gain laser); (bottom) with quantum noise and Four-Wave-Mixing non-linear mode interactions.

Fig. 6.
Fig. 6.

Time dependence of some of the slowly variable Cm ’s (real part) with Four-Wave- Mixing induced non-linear mode interactions. η=1.7. (dot line) Imaginary part of C1 .

Fig. 7.
Fig. 7.

(a) Time dependence of central mode amplitude w/o FWM at long tg . η=1.7. The fluctuations with FWMare not noise but periodic oscillations (fNL 1≃50 kHz). (b) Relative- Intensity-Noise spectrum of C0 with FWM at tg >1ms, reaching the quantum limit.

Tables (1)

Tables Icon

Table 1. Typical GaAs & GaSb-based VeCSEL parameters: AR coated structure, Tq≃l1%.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) = q A q ( t ) cos ( k q z ) × e i ( Δ q + ω 0 ) t ,
d A q dt = γ q 2 A q + ( N N t ) ( 1 i α ) m B m 2 A m e i Δ mq t + F q
dN dt = P N / τ ( N N t ) q , m B q A q A m * e i Δ mq t + F N ,
B q B 0 1 + ( q Δ Γ g ) 2
B 0 c Γ c π w 0 2 L × dg dn ,
R 3 1 16 π 2 R cv 2 ε 0 n o 2 h λ τ Γ c Γ g 2 dg dn × ( η 1 ) N mode 10 7 10 6
d A q dt = [ β q ( 1 i α ) γ q ] 2 A q + F q ( t ) β 0 ( 1 i α ) 2 M s m 0 A q m η im τ Δ × C m ,
β q = η γ 0 1 + Σ m B m τ A m 2 × 1 1 + ( q Δ Γ g ) 2
C m = C m * = j A j * A j + m
2 π f c γ 0 ( η 1 ) η .
< F q ( t ) > = 0 ,
< F q ( t ) F p * ( t ) > ξ γ q δ ( t t ) δ p q ,
ξ = [ 1 exp ( h - ω ( E Fc E Fv ) k B T ) ] 1
A q A m * = A q 2 δ qm ,
f m NL ( η 1 ) γ 0 2 π m τ Δ
τ m NL ( m τ Δ ) 2 γ 0 ( η 1 ) η ,
η NL 1 + π 2 ln ( 2 ) × τ Δ 3 Γ g 2 1.013 in our case ,
t c = 4 ln ( 2 ) × Γ g 2 Δ 2 γ 0 1 ms
δ C 0 2 C 0 st ξ M s × 1 ( η 1 ) 10 2 % with our parameters .
SMSR q 10 Log [ ( η 1 ) M s ξ × ( q Δ Γ g ) 2 ] = 10 Log [ P e λ hc γ 0 ξ × ( q Δ Γ g ) 2 ] .
δ v L = hc 2 π λ P e γ 0 2 ξ ( 1 + α 2 ) .

Metrics