Abstract

The security of quantum key distribution relies on the validity of quantum mechanics as a description of nature and on the non-existence of leaky degrees of freedom in the practical implementations. We experimentally demonstrate how, in some implementations, timing information revealed during public discussion between the communicating parties can be used by an eavesdropper to undetectably access a significant portion of the “secret” key.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dûsek, N. Lütkenhaus, and M. Hendrych, "Quantum Cryptography," Prog. in Opt. 49, 381-454 (2006).
  2. C. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE Int. Conf. On Computer Systems and Signal Processing (ICCSSP), p. 175 (Bangalore, India, 1984).
  3. A. Ekert, "Quantum cryptography based on Bell’s Theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  4. N. Gisin and R. Thew, "Quantum Communication," Nature Photonics 1, 165-171 (2007).
    [CrossRef]
  5. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
    [CrossRef] [PubMed]
  6. C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, "The breakdown flash of Silicon Avalanche Photodiodes backdoor for eavesdropper attacks?" J. Mod. Opt. 48, 2039-2047 (2001).
    [CrossRef]
  7. V. Makarov and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt. 52, 691-705 (2005).
    [CrossRef]
  8. V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006).
    [CrossRef]
  9. N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
    [CrossRef]
  10. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, H.-K. Lo, "Experimental demonstration of time-shift attack against practical quantum key distribution systems," arXiv:0704.3253v1 [quant-ph].
  11. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Free-space distribution of entanglement and single photons over 144 km," quantph/0607182.
  12. A. Poppe, A. Fedrizzi, T. Lorünser, O. Maurhardt, R. Ursin, H. R. Böhm, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, "Practical quantum key distribution with polarization entangled photons," Opt. Express 12, 3865-3871 (2004).
    [CrossRef] [PubMed]
  13. K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Opt. Express 13, 202-209 (2005).
    [CrossRef] [PubMed]
  14. I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006).
    [CrossRef]
  15. C.-Z. Peng, T. Yang, X.-H. Bao, Jun-Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Ying, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km," Phys. Rev. Lett. 95, 030502 (2005).
  16. C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 210 (1988).
    [CrossRef]
  17. MagiQ  Technologies (http://www.magiqtech.com) and idQuantique (http://www.idquantique.com) offer two of the first commercially available QKD systems.

2007 (1)

N. Gisin and R. Thew, "Quantum Communication," Nature Photonics 1, 165-171 (2007).
[CrossRef]

2006 (4)

M. Dûsek, N. Lütkenhaus, and M. Hendrych, "Quantum Cryptography," Prog. in Opt. 49, 381-454 (2006).

V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006).
[CrossRef]

N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
[CrossRef]

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006).
[CrossRef]

2005 (3)

C.-Z. Peng, T. Yang, X.-H. Bao, Jun-Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Ying, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km," Phys. Rev. Lett. 95, 030502 (2005).

V. Makarov and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt. 52, 691-705 (2005).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Opt. Express 13, 202-209 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

2001 (1)

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, "The breakdown flash of Silicon Avalanche Photodiodes backdoor for eavesdropper attacks?" J. Mod. Opt. 48, 2039-2047 (2001).
[CrossRef]

1991 (1)

A. Ekert, "Quantum cryptography based on Bell’s Theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1988 (1)

C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 210 (1988).
[CrossRef]

Anisimov, A.

V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006).
[CrossRef]

Bao, X.-H.

C.-Z. Peng, T. Yang, X.-H. Bao, Jun-Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Ying, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km," Phys. Rev. Lett. 95, 030502 (2005).

Bennett, C. H.

C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 210 (1988).
[CrossRef]

Blauensteiner, B.

Böhm, H. R.

Brassard, G.

C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 210 (1988).
[CrossRef]

Dûsek, M.

M. Dûsek, N. Lütkenhaus, and M. Hendrych, "Quantum Cryptography," Prog. in Opt. 49, 381-454 (2006).

Ekert, A.

A. Ekert, "Quantum cryptography based on Bell’s Theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fasel, S.

N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
[CrossRef]

Fedrizzi, A.

Gisin, N.

N. Gisin and R. Thew, "Quantum Communication," Nature Photonics 1, 165-171 (2007).
[CrossRef]

N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
[CrossRef]

Gorman, P. M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

Halder, M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

Hendrych, M.

M. Dûsek, N. Lütkenhaus, and M. Hendrych, "Quantum Cryptography," Prog. in Opt. 49, 381-454 (2006).

Hjelme, D. R.

V. Makarov and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt. 52, 691-705 (2005).
[CrossRef]

Jennewein, T.

Jun-Zhang, X.-H.

C.-Z. Peng, T. Yang, X.-H. Bao, Jun-Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Ying, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km," Phys. Rev. Lett. 95, 030502 (2005).

Krauss, B.

N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
[CrossRef]

Kurtsiefer, C.

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Opt. Express 13, 202-209 (2005).
[CrossRef] [PubMed]

A. Poppe, A. Fedrizzi, T. Lorünser, O. Maurhardt, R. Ursin, H. R. Böhm, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, "Practical quantum key distribution with polarization entangled photons," Opt. Express 12, 3865-3871 (2004).
[CrossRef] [PubMed]

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, "The breakdown flash of Silicon Avalanche Photodiodes backdoor for eavesdropper attacks?" J. Mod. Opt. 48, 2039-2047 (2001).
[CrossRef]

Lamas-Linares, A.

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006).
[CrossRef]

Lindenthal, M.

Lorünser, T.

Lütkenhaus, N.

M. Dûsek, N. Lütkenhaus, and M. Hendrych, "Quantum Cryptography," Prog. in Opt. 49, 381-454 (2006).

Makarov, V.

V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006).
[CrossRef]

V. Makarov and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt. 52, 691-705 (2005).
[CrossRef]

Marcikic, I.

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006).
[CrossRef]

Maurhardt, O.

Mayer, S.

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, "The breakdown flash of Silicon Avalanche Photodiodes backdoor for eavesdropper attacks?" J. Mod. Opt. 48, 2039-2047 (2001).
[CrossRef]

Peev, M.

Peng, C.-Z.

C.-Z. Peng, T. Yang, X.-H. Bao, Jun-Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Ying, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km," Phys. Rev. Lett. 95, 030502 (2005).

Poppe, A.

Rarity, J. G.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

Resch, K. J.

Ribordy, G.

N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
[CrossRef]

Robert, J.-M.

C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 210 (1988).
[CrossRef]

Schmitt-Manderbach, T.

Skaar, J.

V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006).
[CrossRef]

Suda, M.

Tapster, P. R.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

Taraba, M.

Thew, R.

N. Gisin and R. Thew, "Quantum Communication," Nature Photonics 1, 165-171 (2007).
[CrossRef]

Ursin, R.

Walther, P.

Weier, H.

Weinfurter, H.

Yang, T.

C.-Z. Peng, T. Yang, X.-H. Bao, Jun-Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Ying, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km," Phys. Rev. Lett. 95, 030502 (2005).

Zarda, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, "The breakdown flash of Silicon Avalanche Photodiodes backdoor for eavesdropper attacks?" J. Mod. Opt. 48, 2039-2047 (2001).
[CrossRef]

Zbinden, H.

N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
[CrossRef]

Zeilinger, A.

Appl. Phys. Lett. (1)

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006).
[CrossRef]

J. Mod. Opt. (2)

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, "The breakdown flash of Silicon Avalanche Photodiodes backdoor for eavesdropper attacks?" J. Mod. Opt. 48, 2039-2047 (2001).
[CrossRef]

V. Makarov and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt. 52, 691-705 (2005).
[CrossRef]

Nature (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards global key distribution," Nature 419, 450 (2002).
[CrossRef] [PubMed]

Nature Photonics (1)

N. Gisin and R. Thew, "Quantum Communication," Nature Photonics 1, 165-171 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (2)

V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006).
[CrossRef]

N. Gisin, S. Fasel, B. Krauss, H. Zbinden, and G. Ribordy, "Trojan horse attack on quantum key distribution systems," Phys. Rev. A 73, 022320 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ekert, "Quantum cryptography based on Bell’s Theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

C.-Z. Peng, T. Yang, X.-H. Bao, Jun-Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Ying, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km," Phys. Rev. Lett. 95, 030502 (2005).

Prog. in Opt. (1)

M. Dûsek, N. Lütkenhaus, and M. Hendrych, "Quantum Cryptography," Prog. in Opt. 49, 381-454 (2006).

SIAM J. Comput. (1)

C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 210 (1988).
[CrossRef]

Other (4)

MagiQ  Technologies (http://www.magiqtech.com) and idQuantique (http://www.idquantique.com) offer two of the first commercially available QKD systems.

C. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE Int. Conf. On Computer Systems and Signal Processing (ICCSSP), p. 175 (Bangalore, India, 1984).

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, H.-K. Lo, "Experimental demonstration of time-shift attack against practical quantum key distribution systems," arXiv:0704.3253v1 [quant-ph].

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Free-space distribution of entanglement and single photons over 144 km," quantph/0607182.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A typical configuration of photocounting detectors for quantum key distribution. A beam splitter (BS), polarizing beam splitters (PBS) and a half wave plate (λ/2), divert incoming photons onto a set of detectors, which generate a macroscopic timing signal. This timing information and e.g. a projection basis is revealed publicly, while information on which detector out of two absorbed a photon is the secret used to subsequently generate a key.

Fig. 2.
Fig. 2.

Experimental set-up to characterize the timing jitter of a single photon detector. A train of ultrashort light pulses from a mode-locked Ti:Sapphire laser is sent with strong attenuation into a passively quenched Si avalanche photodiode (APD). A histogram of timing differences (TDH) with respect to the signal of a trigger photodidode (TD) is recorded.

Fig. 3.
Fig. 3.

Photoevent timing histograms for the four detectors involved in a quantum key distribution receiver. While the general shape of the distributions is similar, there is a distinction in the response time visible for detectors 1 and 4 with respect to detectors 2 and 3, which, if not compensated, can be exploited by an eavesdropper to gain knowledge about the measurement result. The solid lines represent a fit to the model in equation 1.

Fig. 4.
Fig. 4.

Eavesdropper’s information on the secret bit as a function of delay Δt 0 between detector timing distributions with identical shapes. The three curves represent different levels of discretization of the data. The top curve corresponds to the continuous distribution and the subsequent are for 0.5 ns and 1 ns time bins. As expected, with an increasing time bin there is less information available for the eavesdropper. For Δt 0 as small as 0.5 ns the eavesdropper will gain access to more than a quarter of the “secret key”.

Tables (1)

Tables Icon

Table 1. Extracted model parameters for the time distributions of the different photodetectors with their statistical uncertainties.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d i ( t ) = 1 2 τ e e τ G 2 4 τ e 2 · e t t 0 τ e erfc ( t t 0 τ G )
I ( X ; T ) = H ( X ) + H ( T ) H ( X , T )
H ( T ) = d ¯ ( t ) log 2 [ d ¯ ( t ) ] d t
H ( X ) = x p 0 ( x ) log 2 [ p 0 ( x ) ]
H ( X , T ) = x p ( x , t ) log 2 [ p ( x , t ) ] d t
= x p 0 ( x ) d x ( t ) log 2 [ p 0 ( x ) d x ( t ) ] d t

Metrics