Abstract

Based on the CROSSBAR network (CN) and the BANYAN network (BN), two new rearrangeable nonblocking constructions of extended BANYAN network (EBN) were proposed for implementing 8×8 optical matrix switch. The interconnection characteristics of these two types of rearrangeable nonblocking EBN were studied, and the logic program for driving switching units was provided. The calculated insertion loss is 3.3 dB for 8×8 optical matrix switch. Silica waveguide 8×8 matrix optical switch was designed and fabricated according to the calculated results. The silica waveguide propagation loss of 0.1dB/cm and waveguide-fiber coupling loss of 0.5dB/point were measured. With the fabricated 8×8 matrix optical switch, optical insertion loss of 4.6 dB, cross-talk of -38 dB, polarization dependent loss of 0.4 dB, averaged switching power of 1.6 W, and switching time of 1 ms were obtained. A basic agreement between experimental results and theoretical calculated values was achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. K. Sun and J. J. Zhang, Fiber Communication Technology, S. P. Wang, ed. (Academic, Beijing, 2001) pp. 317-318.
  2. X. M. Chen and P. Zhou, "Optical switch mainstream technologies," Opt. Commun. Technol. 30(3), 53-55 (2006).
  3. D. G. Sun, Z. Liu, Y. Zha, W. Deng, Y. Zhang, and X. Li, "Thermo-optic waveguide digital optical switch using symmetrically coupled gratings," Opt. Express 13(14), 5463-5471 (2005).
  4. D. G. Sun, W. Deng, S. E, Y. Zha, Z. Liu, X. Li, "Study for performance of the thermo-optic matrix switches with flexible switching units and Banyan networks," Opt. Eng. 45(1), 014602(2006).
    [CrossRef]
  5. W. D. Ma, Q. Liu, and G. H. Hu, "Planar lightwave circuit technology and practical part," Fiber Commun. Technol. 7, 27-28 (2003).
  6. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomports, "Optical switching: switch fabrics, techniques, and architectures," J. Lightwave Technol. 21(2), 384-405 (2003).
    [CrossRef]
  7. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, J. Mann, Y. Overton, C. Palmer and K. Johnson, eds. (Acadamic, San Francisco, Calif., 1998) pp. 329-389.
  8. G. B. Adams and H. J. Sigel, "The extra stage cube: A fault tolerant interconnection network for supersystems," IEEE Trans. Computers 31(5), 443-445 (1982).
    [CrossRef]
  9. C. S. Raghavendra and A. Varma, "Fault-tolerant multiprocessors with redundant path interconnection networks," IEEE Trans. Computers 35(4), 307-316 (1986).
    [CrossRef]
  10. N. F. Tzeng, P. C. Yew, and C. Q. Zhu, "A fault-tolerant scheme for multistage interconnection networks," Parallel Processing, Proc. Int’1 Conf.(1). 368-375 (1985).
  11. V. P. Kumar and S. M. Reddy, "Augmented shuffle-exchange multistage interconnection networks," IEEE Trans. Computers 20(6), 30-40 (1987).
  12. M. P. Eamshaw, J. B. D. Soole, M. Cappuzzo,  et al., "8×8 optical switch matrix using generalized Mach-Zehnder interferometers," IEEE Photon. Lett. 15(6), 810-812 (2003).

2006 (2)

X. M. Chen and P. Zhou, "Optical switch mainstream technologies," Opt. Commun. Technol. 30(3), 53-55 (2006).

D. G. Sun, W. Deng, S. E, Y. Zha, Z. Liu, X. Li, "Study for performance of the thermo-optic matrix switches with flexible switching units and Banyan networks," Opt. Eng. 45(1), 014602(2006).
[CrossRef]

2005 (1)

2003 (3)

W. D. Ma, Q. Liu, and G. H. Hu, "Planar lightwave circuit technology and practical part," Fiber Commun. Technol. 7, 27-28 (2003).

M. P. Eamshaw, J. B. D. Soole, M. Cappuzzo,  et al., "8×8 optical switch matrix using generalized Mach-Zehnder interferometers," IEEE Photon. Lett. 15(6), 810-812 (2003).

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomports, "Optical switching: switch fabrics, techniques, and architectures," J. Lightwave Technol. 21(2), 384-405 (2003).
[CrossRef]

1987 (1)

V. P. Kumar and S. M. Reddy, "Augmented shuffle-exchange multistage interconnection networks," IEEE Trans. Computers 20(6), 30-40 (1987).

1986 (1)

C. S. Raghavendra and A. Varma, "Fault-tolerant multiprocessors with redundant path interconnection networks," IEEE Trans. Computers 35(4), 307-316 (1986).
[CrossRef]

1982 (1)

G. B. Adams and H. J. Sigel, "The extra stage cube: A fault tolerant interconnection network for supersystems," IEEE Trans. Computers 31(5), 443-445 (1982).
[CrossRef]

Adams, G. B.

G. B. Adams and H. J. Sigel, "The extra stage cube: A fault tolerant interconnection network for supersystems," IEEE Trans. Computers 31(5), 443-445 (1982).
[CrossRef]

Cappuzzo, M.

M. P. Eamshaw, J. B. D. Soole, M. Cappuzzo,  et al., "8×8 optical switch matrix using generalized Mach-Zehnder interferometers," IEEE Photon. Lett. 15(6), 810-812 (2003).

Chen, X. M.

X. M. Chen and P. Zhou, "Optical switch mainstream technologies," Opt. Commun. Technol. 30(3), 53-55 (2006).

Deng, W.

D. G. Sun, W. Deng, S. E, Y. Zha, Z. Liu, X. Li, "Study for performance of the thermo-optic matrix switches with flexible switching units and Banyan networks," Opt. Eng. 45(1), 014602(2006).
[CrossRef]

D. G. Sun, Z. Liu, Y. Zha, W. Deng, Y. Zhang, and X. Li, "Thermo-optic waveguide digital optical switch using symmetrically coupled gratings," Opt. Express 13(14), 5463-5471 (2005).

Eamshaw, M. P.

M. P. Eamshaw, J. B. D. Soole, M. Cappuzzo,  et al., "8×8 optical switch matrix using generalized Mach-Zehnder interferometers," IEEE Photon. Lett. 15(6), 810-812 (2003).

Hu, G. H.

W. D. Ma, Q. Liu, and G. H. Hu, "Planar lightwave circuit technology and practical part," Fiber Commun. Technol. 7, 27-28 (2003).

Kumar, V. P.

V. P. Kumar and S. M. Reddy, "Augmented shuffle-exchange multistage interconnection networks," IEEE Trans. Computers 20(6), 30-40 (1987).

Li, X.

Liu, Q.

W. D. Ma, Q. Liu, and G. H. Hu, "Planar lightwave circuit technology and practical part," Fiber Commun. Technol. 7, 27-28 (2003).

Liu, Z.

Ma, W. D.

W. D. Ma, Q. Liu, and G. H. Hu, "Planar lightwave circuit technology and practical part," Fiber Commun. Technol. 7, 27-28 (2003).

Papadimitriou, G. I.

Papazoglou, C.

Pomports, A. S.

Raghavendra, C. S.

C. S. Raghavendra and A. Varma, "Fault-tolerant multiprocessors with redundant path interconnection networks," IEEE Trans. Computers 35(4), 307-316 (1986).
[CrossRef]

Reddy, S. M.

V. P. Kumar and S. M. Reddy, "Augmented shuffle-exchange multistage interconnection networks," IEEE Trans. Computers 20(6), 30-40 (1987).

Sigel, H. J.

G. B. Adams and H. J. Sigel, "The extra stage cube: A fault tolerant interconnection network for supersystems," IEEE Trans. Computers 31(5), 443-445 (1982).
[CrossRef]

Soole, J. B. D.

M. P. Eamshaw, J. B. D. Soole, M. Cappuzzo,  et al., "8×8 optical switch matrix using generalized Mach-Zehnder interferometers," IEEE Photon. Lett. 15(6), 810-812 (2003).

Sun, D. G.

D. G. Sun, W. Deng, S. E, Y. Zha, Z. Liu, X. Li, "Study for performance of the thermo-optic matrix switches with flexible switching units and Banyan networks," Opt. Eng. 45(1), 014602(2006).
[CrossRef]

D. G. Sun, Z. Liu, Y. Zha, W. Deng, Y. Zhang, and X. Li, "Thermo-optic waveguide digital optical switch using symmetrically coupled gratings," Opt. Express 13(14), 5463-5471 (2005).

Varma, A.

C. S. Raghavendra and A. Varma, "Fault-tolerant multiprocessors with redundant path interconnection networks," IEEE Trans. Computers 35(4), 307-316 (1986).
[CrossRef]

Zha, Y.

Zhang, Y.

Zhou, P.

X. M. Chen and P. Zhou, "Optical switch mainstream technologies," Opt. Commun. Technol. 30(3), 53-55 (2006).

Fiber Commun. Technol. (1)

W. D. Ma, Q. Liu, and G. H. Hu, "Planar lightwave circuit technology and practical part," Fiber Commun. Technol. 7, 27-28 (2003).

IEEE Photon. Lett. (1)

M. P. Eamshaw, J. B. D. Soole, M. Cappuzzo,  et al., "8×8 optical switch matrix using generalized Mach-Zehnder interferometers," IEEE Photon. Lett. 15(6), 810-812 (2003).

IEEE Trans. Computers (3)

G. B. Adams and H. J. Sigel, "The extra stage cube: A fault tolerant interconnection network for supersystems," IEEE Trans. Computers 31(5), 443-445 (1982).
[CrossRef]

C. S. Raghavendra and A. Varma, "Fault-tolerant multiprocessors with redundant path interconnection networks," IEEE Trans. Computers 35(4), 307-316 (1986).
[CrossRef]

V. P. Kumar and S. M. Reddy, "Augmented shuffle-exchange multistage interconnection networks," IEEE Trans. Computers 20(6), 30-40 (1987).

J. Lightwave Technol. (1)

Opt. Commun. Technol. (1)

X. M. Chen and P. Zhou, "Optical switch mainstream technologies," Opt. Commun. Technol. 30(3), 53-55 (2006).

Opt. Eng. (1)

D. G. Sun, W. Deng, S. E, Y. Zha, Z. Liu, X. Li, "Study for performance of the thermo-optic matrix switches with flexible switching units and Banyan networks," Opt. Eng. 45(1), 014602(2006).
[CrossRef]

Opt. Express (1)

Other (3)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, J. Mann, Y. Overton, C. Palmer and K. Johnson, eds. (Acadamic, San Francisco, Calif., 1998) pp. 329-389.

X. K. Sun and J. J. Zhang, Fiber Communication Technology, S. P. Wang, ed. (Academic, Beijing, 2001) pp. 317-318.

N. F. Tzeng, P. C. Yew, and C. Q. Zhu, "A fault-tolerant scheme for multistage interconnection networks," Parallel Processing, Proc. Int’1 Conf.(1). 368-375 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Constructions of the CROSSBAR network and the BANYAN network with the width of N=8: (a) is the CROSSBAR network; (b) is the BANYAN network

Fig. 2.
Fig. 2.

Simulation results of the intersection-induced optical loss versus the intersection angle

Fig. 3.
Fig. 3.

Simulation results of the insertion optical loss versus the switch scale N

Fig. 4.
Fig. 4.

Constructions of the two types of extended BANYAN network: (a) the type-I construction; (b) the type-II construction

Fig. 5.
Fig. 5.

Flow diagram of the switching driver with respect to the type-I extended BANYAN network

Fig. 6.
Fig. 6.

Simulation results of optical losses versus switch scale N: (a) the optical losses of the EBN construction versus switch scale N; (b) the insertion losses of the BN and EBN constructions versus switch scale N

Fig. 7.
Fig. 7.

Simulation results of the intersection number and intersection-induced loss versus the switch scale N: (a) the intersection number versus switch scale N; (b) the total intersection-induced loss at θbs =30 degree

Fig. 8.
Fig. 8.

Simulation results of the total switching power versus the switch width N

Fig. 9.
Fig. 9.

Photo image of 8×8 matrix optical switch with the EBN construction and silica waveguides, where WG stands for waveguide

Fig. 10.
Fig. 10.

Measured results of insertion loss versus applied power of the fabricated 8×8 optical switch with the EBN construction and silica waveguides

Tables (2)

Tables Icon

Table 1. Calculation results of matrix T according to type-I EBN construction

Tables Icon

Table 2. Measured results of 8×8 optical matrix switch

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n int er ( θ bb ) = N 2 i i = 1 , 2 , n
n int er ( θ bs ) = N 2 i 1 i = 1 , 2 , n
T L int er = i = 1 n L ( θ bb ) · n int er ( θ bb ) + i = 1 n L ( θ bs ) · n int er ( θ bs )
T L switch = n MZI L MZI
T L prop = n MZI l MZI L prop
I L = T L int er + T L switch + T L prop + 2 L WFC

Metrics