Abstract

In order to use photopolymers in the recording of holographic memories, high physical thickness is required. This generates many problems associated with the attenuation of light in the recording due to Beer’s law. One of the more significant disadvantages is the fact that there are differences between the physical thickness of the material and the optical thickness of the holograms recorded. The optical thickness characterizes the angular selectivity of the holograms and determines the separation between two consecutive holograms in angular peristrophic multiplexing. In this work we propose a new method to record many holograms multiplexed with similar diffraction efficiency values taking into account the different effective optical thickness of each hologram.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Horimai, X. Tan, and J. Li “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [Crossref] [PubMed]
  2. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
    [Crossref]
  3. J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the non local polymerization-driven diffusion model,” J. Opt. Soc. Am. B 20, 1443–1451 (2004).
    [Crossref]
  4. D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” Proc. SPIE 5216, 10–25 (2003).
    [Crossref]
  5. W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
    [Crossref]
  6. H. J. Coufal and D. PsaltisG. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 2000).
  7. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
    [Crossref] [PubMed]
  8. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
    [Crossref] [PubMed]
  9. E. Fernández, C. García, M. Ortuño, S. Gallego, A. Belendez, and I. Pascual, “Optimization of a thick PVA/acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661–7666 (2006).
    [Crossref] [PubMed]
  10. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [Crossref] [PubMed]
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  12. S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
    [Crossref]
  13. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
    [Crossref]
  14. J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
    [Crossref]
  15. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121–5128, (2006).
    [Crossref] [PubMed]
  16. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
    [Crossref] [PubMed]
  17. C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
    [Crossref]
  18. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
    [Crossref]
  19. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
    [Crossref] [PubMed]
  20. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
    [Crossref]

2007 (1)

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
[Crossref]

2006 (3)

2005 (4)

2004 (2)

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the non local polymerization-driven diffusion model,” J. Opt. Soc. Am. B 20, 1443–1451 (2004).
[Crossref]

2003 (6)

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” Proc. SPIE 5216, 10–25 (2003).
[Crossref]

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

2000 (1)

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

1996 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Anderson, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Ayer, M.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Belendez, A.

Beléndez, A.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121–5128, (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
[Crossref]

Benléndez, A.

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
[Crossref]

Bergman, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” Proc. SPIE 5216, 10–25 (2003).
[Crossref]

Chikama, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Coufal, H. J.

H. J. Coufal and D. PsaltisG. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 2000).

Curtis, K. R.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Earhart, T.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Fernández, E.

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Gallego, S.

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
[Crossref]

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Belendez, and I. Pascual, “Optimization of a thick PVA/acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121–5128, (2006).
[Crossref] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
[Crossref]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

García, C.

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Belendez, and I. Pascual, “Optimization of a thick PVA/acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

Hertrich, G.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Hidaka, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Hill, A. J.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Horimai, H.

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Kelly, J. V.

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
[Crossref]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[Crossref] [PubMed]

J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the non local polymerization-driven diffusion model,” J. Opt. Soc. Am. B 20, 1443–1451 (2004).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Lawrence, J. R.

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

Li, J.

Loechel, W.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Malang, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Márquez, A.

Neipp, C.

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
[Crossref]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121–5128, (2006).
[Crossref] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
[Crossref]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
[Crossref]

O’ Neill, F. T.

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
[Crossref]

O’Neill, F. T.

J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the non local polymerization-driven diffusion model,” J. Opt. Soc. Am. B 20, 1443–1451 (2004).
[Crossref]

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Ortuno, M.

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
[Crossref]

Ortuño, M.

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
[Crossref]

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Belendez, and I. Pascual, “Optimization of a thick PVA/acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121–5128, (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

Ozawa, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Pane, M.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Parris, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Pascual, I.

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
[Crossref]

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Belendez, and I. Pascual, “Optimization of a thick PVA/acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121–5128, (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
[Crossref]

Psaltis, D.

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
[Crossref] [PubMed]

H. J. Coufal and D. PsaltisG. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 2000).

Pu, A.

Raguin, D. H

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” Proc. SPIE 5216, 10–25 (2003).
[Crossref]

Riley, B.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Sheridan, J. T.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1950 (2005).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[Crossref] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
[Crossref]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the non local polymerization-driven diffusion model,” J. Opt. Soc. Am. B 20, 1443–1451 (2004).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

Shuman, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Stanhope, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Tackitt, M. C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Tan, X.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Tomita, Y.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” Proc. SPIE 5216, 10–25 (2003).
[Crossref]

Wilson, W. L.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Wolfgang, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Appl. Opt (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt  42, 7008–7012 (2003).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

Appl. Phys. Lett. (1)

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Opt. Soc. Am. A (1)

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the non local polymerization-driven diffusion model,” J. Opt. Soc. Am. B 20, 1443–1451 (2004).
[Crossref]

J. Opt. Soc. of Am. B (1)

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuno, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions” J. Opt. Soc. of Am. B 22, 407–406 (2005).
[Crossref]

Opt. Commun. (1)

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43 (2007).
[Crossref]

Opt. Comun. (1)

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Comun. 233, 311–322 (2004).
[Crossref]

Opt. Express (4)

Optics Commun. (1)

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram” Optics Commun. 224, 27–34 (2003).
[Crossref]

Proc. SPIE (2)

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” Proc. SPIE 5216, 10–25 (2003).
[Crossref]

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE,  5216, 178–191 (2003).
[Crossref]

Other (1)

H. J. Coufal and D. PsaltisG. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Experimental effective optical thickness as a function of hologram number to record 60 holograms with diffraction efficiency around 2%.

Fig. 2.
Fig. 2.

Holographic grating structure

Fig. 3.
Fig. 3.

Transmittance of the layer as a function of the exposure time for Kα =0.001cm2mW-1s-1 (continuous line) and Kα =0.0005cm2mW-1s-1 (discontinuous line).

Fig. 4.
Fig. 4.

Time scheme needed to record 250 holographic gratings with 0.4% diffraction efficiency for two different velocities of bleaching process, Kα =0.001cm2mW-1s-1 (continuous line) and Kα =0.0005cm2mW-1s-1 (discontinuous line).

Fig. 5.
Fig. 5.

Effective optical thickness for 250 holographic gratings recorded with 0.4% diffraction efficiency for two different velocities of bleaching process, Kα =0.001cm2mW-1s-1 (continuous line) and Kα =0.0005cm2mW-1s-1 (discontinuous line).

Fig. 6.
Fig. 6.

Time scheme needed to record 300 gratings with 0.4% diffraction efficiency for high values of polymerization rate: kR=0.026cm2mW-1s-1 and Kα=0.0005cm2mW-1s-1.

Fig. 7.
Fig. 7.

Effective optical thickness for 300 gratings recorded with 0.4% diffraction efficiency for high values of polymerization rate: kR =0.026cm2mW-1s-1 and =0.0005cm2mW-1s-1

Fig. 8.
Fig. 8.

Time scheme needed to record 600 holographic gratings with 0.4% of diffraction efficiency for high values of polymerization rate: kR =0.026cm2mW-1s-1, α0 =0.012 µm-1 and Kα =0.0005cm2mW-1s-1

Fig. 9.
Fig. 9.

Effective optical thickness for 600 holographic gratings recorded with 0.4% diffraction efficiency for high values of polymerization rate: kR =0.026cm2mW-1s-1, α0 =0.012 µm-1 and Kα =0.0005cm2mW-1s-1.

Fig. 10.
Fig. 10.

Average monomer and polymer concentrations as a function of the depth after 300 and 600 holographic gratings are recorded with 0.4% diffraction efficiency.

Fig. 11.
Fig. 11.

Diagram of the hologram formation as a function of hologram number.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ M ] ( x , z , t ) t = x D ( t ) [ M ] ( x , z , t ) x k R ( t ) I γ ( x , z , t ) [ M ] ( x , z , t ) + z D ( t ) [ M ] ( x , z , t ) z
[ P ] ( x , z , t ) t = k R ( t ) I γ ( x , z , t ) [ M ] ( x , z , t )
I ( x , z ) = I 0 [ 1 + cos ( K g x ) ] e α ( t ) z
k R ( t ) = k R exp ( φ k [ P ] )
D ( t ) = D 0 exp ( φ D [ P ] )
n 1 d eff = λ 0 cos θ π sin 1 DE ATT
n 1 = ( n dark 2 + 2 ) 2 6 n dark [ ( n p 2 1 n p 2 + 2 n b 2 1 n b 2 + 2 ) [ P ] 1 ]
α ( t ) = α 0 e K α I 0 β t

Metrics