Abstract

We report on a novel method combining achromatic complex FDOCT signal reconstruction with a common path and dual beam configuration. The complex signal reconstruction allows resolving the complex ambiguity of the Fourier transform and to enhance the achievable depth range by a factor of two. The dual beam configuration shares the property of high phase stability with common path FDOCT. This is of importance for a proper complex signal reconstruction and is in particular useful in combination with handheld probes such as in endoscopy and catheter applications. The advantage of the presented approach is the flexibility to choose arbitrarily positioned interfaces in the sample arm as reference together with the possibility to compensate for dispersion. The method and first experimental results are presented and its properties concerning SNR and dynamic range are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  2. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  5. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
    [CrossRef] [PubMed]
  6. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
    [CrossRef] [PubMed]
  7. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  8. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  9. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 44009 (2005).
    [CrossRef] [PubMed]
  10. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  11. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
    [CrossRef] [PubMed]
  12. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
    [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
    [CrossRef] [PubMed]
  14. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
    [CrossRef] [PubMed]
  15. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
    [CrossRef] [PubMed]
  16. M. V. Sarunic, S. Weinberg, and J. A. Izatt, "Full-field swept-source phase microscopy," Opt. Lett. 31, 1462-1464 (2006).
    [CrossRef] [PubMed]
  17. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. De Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
    [CrossRef] [PubMed]
  18. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
    [CrossRef] [PubMed]
  19. C. Joo, K. H. Kim, and J. F. De Boer, "Spectral-domain optical coherence phase and multiphoton microscopy," Opt. Lett. 32, 623-625 (2007).
    [CrossRef] [PubMed]
  20. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006).
    [CrossRef] [PubMed]
  21. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
    [CrossRef] [PubMed]
  22. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.
  23. C. K. Hitzenberger, "Optical measurement of the axial eye length by Laser Doppler Interferometry," Investigative Ophthalmology and Visual Science 32, 616-624 (1991).
    [PubMed]
  24. M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
    [CrossRef]
  25. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005).
    [CrossRef] [PubMed]
  26. A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
    [CrossRef]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
    [CrossRef] [PubMed]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef] [PubMed]
  29. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
    [CrossRef]
  30. A. H. Bachmann, M. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler Imaging and optical vivisection of retinal blood flow " Opt. Express 15, 408-422 (2007).
    [CrossRef] [PubMed]

2007 (3)

2006 (4)

2005 (7)

J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 44009 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. De Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

2004 (5)

2003 (6)

2000 (1)

M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
[CrossRef]

1998 (1)

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1994 (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

1991 (1)

C. K. Hitzenberger, "Optical measurement of the axial eye length by Laser Doppler Interferometry," Investigative Ophthalmology and Visual Science 32, 616-624 (1991).
[PubMed]

Adler, D. C.

Akkin, T.

Bachman, M.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Bachmann, A. H.

Bajraszewski, T.

Barton, J. K.

Baumgartner, A.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
[CrossRef]

Blatter, C.

Boudoux, C.

Bouma, B. E.

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

Cense, B.

Chen, T. C.

Chen, Z.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Chen, Z. P.

Choma, M. A.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 44009 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

Compter, J. C.

M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
[CrossRef]

Creazzo, T. L.

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef] [PubMed]

De Boer, J. F.

C. Joo, K. H. Kim, and J. F. De Boer, "Spectral-domain optical coherence phase and multiphoton microscopy," Opt. Lett. 32, 623-625 (2007).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. De Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

Drexler, W.

Ellerbee, A. K.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

Fujimoto, J. G.

Gorczynska, I.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
[CrossRef] [PubMed]

Guo, S.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Hafez, M.

M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
[CrossRef]

Hermann, B.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

C. K. Hitzenberger, "Optical measurement of the axial eye length by Laser Doppler Interferometry," Investigative Ophthalmology and Visual Science 32, 616-624 (1991).
[PubMed]

Hsu, K.

Huber, R.

Izatt, J.

Izatt, J. A.

M. V. Sarunic, S. Weinberg, and J. A. Izatt, "Full-field swept-source phase microscopy," Opt. Lett. 31, 1462-1464 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 44009 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

Jansen, G. L. M.

M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
[CrossRef]

Joo, C.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

Kim, K. H.

Kowalczyk, A.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
[CrossRef] [PubMed]

Lasser, T.

Le, T.

Leitgeb, R.

Leitgeb, R. A.

Li, G. P.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Mujat, M.

Nassif, N.

Nelson, J. S.

Park, B. H.

Pierce, M. C.

Povazay, B.

Radzewicz, C.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
[CrossRef] [PubMed]

Salathe, R. P.

M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
[CrossRef]

Sarunic, M. V.

Sattman, H.

Sattmann, H.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

Schmetterer, L.

Schmetterer, L. F.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

Sidler, T. C.

M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
[CrossRef]

Stingl, A.

Strasser, I.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

Taira, K.

Targowski, P.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
[CrossRef] [PubMed]

Tearney, G. J.

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

Tumlinson, A. R.

Unfried, C.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

Unterhuber, A.

Villiger, M.

Wang, L.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Wang, Y.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Wasilewski, W.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
[CrossRef] [PubMed]

Weinberg, S.

White, B. R.

Wojtkowski, M.

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
[CrossRef] [PubMed]

Yang, C.

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

Yun, S. H.

Zawadzki, R. J.

Zhang, J.

J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Am. J. Ophthalmol. (1)

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004).
[CrossRef] [PubMed]

Investigative Ophthalmology and Visual Science (1)

C. K. Hitzenberger, "Optical measurement of the axial eye length by Laser Doppler Interferometry," Investigative Ophthalmology and Visual Science 32, 616-624 (1991).
[PubMed]

J. Biomed. Opt. (4)

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
[CrossRef]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 44009 (2005).
[CrossRef] [PubMed]

Mechatronics (1)

M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000).
[CrossRef]

Opt. Commun. (2)

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (11)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
[CrossRef] [PubMed]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006).
[CrossRef] [PubMed]

A. H. Bachmann, M. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler Imaging and optical vivisection of retinal blood flow " Opt. Express 15, 408-422 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

Opt. Lett. (9)

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, "Full-field swept-source phase microscopy," Opt. Lett. 31, 1462-1464 (2006).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. De Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

C. Joo, K. H. Kim, and J. F. De Boer, "Spectral-domain optical coherence phase and multiphoton microscopy," Opt. Lett. 32, 623-625 (2007).
[CrossRef] [PubMed]

J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.

Supplementary Material (1)

» Media 1: MOV (2182 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Concept of a common path configuration. A prominent reflection (R1) close to the sample structure (R2) is used as reference signal. Δz is the optical path difference between the sample interfaces R1 and R2.

Fig. 2.
Fig. 2.

(a) Dual beam principle. The output of an interferometer with a relative delay of 2Δz IILS between the two light beam intensities IR and IS (interferometric light source) is precompensating for the relative distance between R1 (reference surface) and R2 (sample). The configuration presents a small relative distance Δz between reference surface (R1) and sample (R2) and up to four cross correlation terms might occur. The blue beam can be considered as the reference beam. (b) Dual beam configuration presenting a large relative distance Δz as compared to the depth range of the spectrometer (or swept source respectively) and only one cross correlation term occurs.

Fig. 3.
Fig. 3.

Scheme illustrating the filling of a camera pixel in case of dual beam and standard FDOCT respectively.

Fig. 4.
Fig. 4.

Dual beam heterodyne FDOCT. Inlet A depicts synchronization of the line detector ((b) trigger and (c) exposure time) with (a) the beating signal. Inlet B shows the reference arm added (same fiber length as in sample arm) and used for phase stability comparison (§4) between the dual beam and the standard configuration. See text for details.

Fig. 5.
Fig. 5.

(2.2 MB) Time sequence of 500 depth scans per tomogram at same position, using the setup depicted in Fig. 4. The movie is shown at 5fps (7x reduced speed with respect to original acquisition rate). The dual beam signal (red) remains stable even if the fiber is perturbed whereas the signal peak corresponding to the standard setup (blue) is heavily perturbed. The dashed line indicates the standard deviation σ std of the phase fluctuations over one tomogram. The shown tomogram depth is approximately 400µm (in air), SNR≈26.5dB. [Media 1]

Fig. 6.
Fig. 6.

Tomogram of human fingertip with sweat gland, slice from 3D stack of Fig. 7(a), indicated by red frame. (a) Direct FFT on measured data, (b) with background correction employing averaging before FFT, (c) differential complex reconstruction and (d) standard complex reconstruction with background correction. Frame size: 2.5mm lateral×1.92mm depth, in air.

Fig. 7.
Fig. 7.

(a) Tomogram of human finger tip (structure size: 2.5mm×2.mm×~1.1mm, in air) with the lower wavy red line delimiting the dermis-epidermis border and the red frame indicating the position of the 2D tomogram shown in Fig. 6. (b) Thickness map of epidermis in (a) (top view, size: 2.5mm×2mm, corrected for ntissue=1.34).

Tables (1)

Tables Icon

Table 1. Phase fluctuations for three different configurations with similar local SNR≈26.5dB.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I CCD = ( E R ( r ) + E R ( s ) + E S ( r ) + E S ( s ) ) · ( E R ( r ) * + E R ( s ) * + E S ( r ) * + E S ( s ) * )
= E R ( r ) E R ( r ) * + E R ( r ) E R ( s ) * + E R ( r ) E S ( r ) * + E R ( r ) E S ( s ) * +
+ E R ( s ) E R ( r ) * + E R ( s ) E R ( s ) * + E R ( s ) E S ( r ) * + E R ( s ) E S ( s ) * +
+ E S ( r ) E R ( r ) * + E S ( r ) E R ( s ) * + E S ( r ) E S ( r ) * + E S ( r ) E S ( s ) * +
+ E S ( s ) E R ( r ) * + E S ( s ) E R ( s ) * + E S ( s ) E S ( r ) * + E S ( s ) E S ( s ) *
E R , S ( r , s ) = I R , S ( r , s ) ( k ) e j ( kz R , S ( r , s ) ( ω 0 + ω R , S ) t ) ,
I CCD ( k , t ) = I R ( r ) ( k ) + I R ( s ) ( k ) + I S ( r ) ( k ) + I S ( s ) ( k ) + 2 I R ( r ) ( k ) I S ( s ) ( k ) cos ( Ω t Ψ ) ,
I ˜ 2 x 2 ( k , t 0 ) = I ˜ ( k , t 0 ) I ˜ ( k , t 0 + π Ω ) = 2 ( I AC ( k , t 0 ) j I AC ( k , t 0 + π 2 Ω ) ) ,
N signal ( k ) = N AC ( k ) = 2 N ref ( k ) N sample ( k ) cos ( Ω t Ψ ) ,
N DC N ref ( k ) + N sample ( k ) ρ r 2 ρ s 2 γ N sat ,
N sample = ξ ρ s 2 ρ r 2 N ref = ξ 1 + ξ ρ s 2 ρ r 2 γ N sat .
SNR = α γ N sat ρ s 2 ρ r 2 ξ ( 1 + ξ ) 2 .
SNR dual ρ s 2 I , and SNR std 4 ρ s 2 I , thus SNR dual = SNR std 4 .
( ρ s , dual ( max ) ) 2 = 4 ( ρ s , std ( max ) ) 2 .
Σ dual = 1 4 Σ std ,
( ρ s , dual ( max ) ) 2 ( ρ s , std ( max ) ) 2 = ( ρ s , dual ( min ) ) 2 ( ρ s , std ( min ) ) 2 ,
DR dual = DR std N sat ( 1 γ ) 2 γ .

Metrics