Abstract

We demonstrate an electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback. Our experiments and scattering-matrix-based modeling show that the resonance wavelengths, extinction ratios, and line shapes depend on the feedback coupling and can be controllably tuned by means of carrier injection to the feedback-waveguide. We also demonstrate nearly uniform resonance line shapes over multiple free-spectral ranges by nearly phase-matching the feedback and the microring.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, "The past, present, and future of silicon photonics," IEEE J. of Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
    [CrossRef]
  2. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
    [CrossRef]
  3. B. Jalali, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  4. G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1254 (1999).
    [CrossRef]
  5. G. T. Paloczi, Y. Huang, A. Yariv and S. Mookherjea, "Polymeric Mach-Zehnder interferometer using serially coupled microring resonators," Opt. Express 11, 2666-2671 (2003).
    [CrossRef] [PubMed]
  6. W. Green, R. Lee, G. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control," Opt. Express 13, 1651-1659 (2005).
    [CrossRef] [PubMed]
  7. S. Mookherjea, "Mode cycling in microring optical resonators," Opt. Lett. 30, 2751-2753 (2005).
    [CrossRef] [PubMed]
  8. M. R. Watts, T. Barwicz, M. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, "Microring-resonator filter with doubled free-spectral-range by two-point coupling," in proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2005), CMP3.
  9. C. Li, L. Zhou, and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069-5076 (2007).
    [CrossRef] [PubMed]
  10. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron 23, 123-129 (1987).
    [CrossRef]
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics 2nd edition, (John Wiley & Sons, 2007), Chap. 8.
  12. L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. 32, 781-783 (2007).
    [CrossRef] [PubMed]
  13. U. Fano, "Effect of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]

2007

2006

B. Jalali, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

R. Soref, "The past, present, and future of silicon photonics," IEEE J. of Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

2005

2003

1999

1987

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron 23, 123-129 (1987).
[CrossRef]

1961

U. Fano, "Effect of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Barkai, A.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron 23, 123-129 (1987).
[CrossRef]

Cohen, O.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Cohen, R.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

DeRose, G.

Fano, U.

U. Fano, "Effect of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Green, W.

Huang, Y.

Izhaky, N.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Jalali, B.

Koehl, S.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Lee, R.

Lenz, G.

Li, C.

Madsen, C. K.

Mookherjea, S.

Morse, M. T.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Paloczi, G. T.

Paniccia, M. J.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Poon, A. W.

Rubin, D.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Sarid, G.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Scherer, A.

Soref, R.

R. Soref, "The past, present, and future of silicon photonics," IEEE J. of Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron 23, 123-129 (1987).
[CrossRef]

Yariv, A.

Zhou, L.

IEEE J. of Sel. Top. Quantum Electron.

R. Soref, "The past, present, and future of silicon photonics," IEEE J. of Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, "Development of CMOS-compatible integrated silicon photonics devices," IEEE J. of Sel. Top. Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

IEEE J. Quantum Electron

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron 23, 123-129 (1987).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Phys. Rev.

U. Fano, "Effect of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Other

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics 2nd edition, (John Wiley & Sons, 2007), Chap. 8.

M. R. Watts, T. Barwicz, M. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, "Microring-resonator filter with doubled free-spectral-range by two-point coupling," in proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2005), CMP3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of an electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback. Inset: cross-sectional view schematic of the lateral p-i-n diode embedded in the U-bend section. Vd : driving voltage.

Fig. 2.
Fig. 2.

(a). Modeling schematic. (b), (c) Physical interpretations of the terms in Eqs. (3) and (4). The corresponding terms of the electric-field transmissions through various paths are labelled. In (b), M: starting-point in the feedback-waveguide just prior to the input-coupler. N: ending-point in the feedback-waveguide just after the output-coupler. In (c), P: starting- and ending-points in the microring just prior to the input-coupler.

Fig. 3.
Fig. 3.

(a). Illustration of the resonance-dependent line shapes in general cases. Resonances at wavelengths λm +1 and λm see different feedback phase values Δϕm +1 and Δϕm . (b) and (c) Modeled feedback phase Δϕ (λ) and the corresponding transmission spectra with (b) Δϕ(λm +1) - Δϕ(λm )≈1.4π, and (c) Δϕ(λm +1) - Δϕ(λm )≈2π.

Fig. 4.
Fig. 4.

(a).-4(c). Optical micrographs of the three fabricated devices (I), (II), and (III). (d) and (e) Zoom-in view SEMs of (d) the waveguide-circular-microring coupling region, and (e) the waveguide-racetrack-microring coupling region without oxide upper-cladding. (f) Cross-sectional view SEM of the single-mode waveguide without oxide upper-cladding.

Fig. 5.
Fig. 5.

(a)-(c) Measured (solid grey lines) and modeled (dashed red lines) TE-polarized transmission spectra of device (I) upon low injection levels with bias voltages of Vd =(a) 0 V, (b) 0.9 V, and (c) 1.0 V. (d)-(f) Measured (solid grey lines) and modeled (dashed red lines) TE-polarized transmission spectra of device (I) upon high injection levels with bias voltages of Vd =(a) 1.8 V, (b) 2.3 V, and (c) 2.9 V.

Fig. 6.
Fig. 6.

(a).-(d). Measured (solid grey lines) and modeled (dashed red lines) TE-polarized transmission spectra of device (II) under various bias voltages of Vd =(a) 1.2 V, (b) 1.4 V, (c) 2.0 V, and (d) 3.0 V.

Fig. 7.
Fig. 7.

Measured (solid grey lines) and modeled (dashed red lines) TE-polarized transmission spectra of device (III) under various bias voltages of Vd =(a) 0.7 V, (b) 1.5 V, (c) 2.0 V, and (d) 2.9 V.

Fig. 8.
Fig. 8.

(a).-(e). Modeled transmission spectra under various attenuated feedback conditions for a racetrack microring device with strong coupling (κ≈0.94).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

[ E o E 2 ] = [ τ e i φ κ e i ( φ + π 2 ) κ e i ( φ + π 2 ) τ e i φ ] [ b γ e i ϕ 0 0 ae i θ ] [ τ e i φ κ e i ( φ + π 2 ) κ e i ( φ + π 2 ) τ e i φ ] [ E i E 1 ] ,
E 1 = ae i θ E 2 .
I out I in = E o E i 2 = τ 2 b γ e i ( ϕ + 2 φ ) + κ 2 ae i ( θ + 2 φ + π ) + a 2 b γ e i ( 2 θ + 4 φ + ϕ + π ) 1 [ τ 2 a 2 e i ( 2 θ + 2 φ ) + κ 2 ab γ e i ( θ + 2 φ + ϕ + π ) ] 2 .
A = A e i Φ = τ 2 a 2 e i ( 2 θ + 2 φ ) + κ 2 ab γ e i ( θ + 2 φ + ϕ + π ) ,
I out I in = b 2 γ 2 τ 2 a 2 e i ( 2 θ + 2 φ ) 1 τ 2 a 2 e i ( 2 θ + 2 φ ) 2 ,
I out I in = a 2 κ 4 1 1 τ 2 a 2 e i ( 2 θ + 2 φ ) 2 ,
I out I in = a 2 κ 2 ab γ e i ( θ + 2 φ + ϕ + π ) 1 κ 2 ab γ e i ( θ + 2 φ + ϕ + π ) 2 ,
Δ ϕ ( λ m ) = 2 n m π + c ,
A = e i ( 2 θ + 2 φ ) [ τ 2 a 2 κ 2 ab γ e ic ] .
Φ = 2 θ + 2 φ Φ c = 2 m π .
( I out I in ) λ m = τ 2 b γ e ic κ 2 a a 2 b γ e i Φ c e ic 1 e i Φ c [ τ 2 a 2 κ 2 ab γ e ic ] 2 .
Δ ϕ ( λ ) = n eff 2 π λ ( L b L a ) + δ ϕ .
n eff L res = m λ m ,
L b L a = n L res ( n = 1 , 2 , 3 ) .
L b 2 n ( L a + L c ) + L a .

Metrics