Abstract

Refraction at a smooth interface is accompanied by momentum transfer normal to the interface. We show that corrugating an initially smooth, totally reflecting, non-metallic interface provides a momentum kick parallel to the surface, which can be used to refract light negatively or positively. This new mechanism of negative refraction is demonstrated by visible light and microwave experiments on grisms (grating-prisms). Single-beam all-angle-negative-refraction is achieved by incorporating a surface grating on a flat multilayered material. This negative refraction mechanism is used to create a new optical device, a grating lens. A plano-concave grating lens is demonstrated to focus plane microwaves to a point image. These results show that customized surface engineering can be used to achieve negative refraction even though the bulk material has positive refractive index. The surface periodicity provides a tunable parameter to control beam propagation leading to novel optical and microwave devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968);V. Veselago V. and E. E. Narimanov, "The left hand of brightness: past, present and future of negative index materials," Nat. Mat. 5, 759-762 (2006).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  3. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  4. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
    [CrossRef] [PubMed]
  5. P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
    [CrossRef] [PubMed]
  6. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
    [CrossRef] [PubMed]
  7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  10. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
    [CrossRef]
  11. J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton Univ. Press, Princeton, NJ, 1995).
  12. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  13. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
    [CrossRef]
  14. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  15. W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005).
    [CrossRef] [PubMed]
  16. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  17. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, Inc. 2003). p. 3.
  18. W. T. Lu and S. Sridhar, unpublished.
  19. P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).
    [CrossRef]
  20. P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006).
    [CrossRef]
  21. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  22. D. R. Fredkin and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
    [CrossRef]
  23. A. Alú and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
    [CrossRef]
  24. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987); "Photonic band-gap structures," J. Opt. Soc. Am. B 10, 283 (1993).
    [CrossRef] [PubMed]
  25. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
    [CrossRef] [PubMed]
  26. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  27. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
    [CrossRef] [PubMed]
  28. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
    [CrossRef] [PubMed]
  29. Y. J. Huang, W. T. Lu, and S. Sridhar, "Alternative approach to all-angle negative refraction in two-dimensional photonic crystals," preprint: cond-mat/0703733 (2007).
  30. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc. 1997).
  31. E. Noponen, Electromagnetic Theory of Diffractive Optics (PhD thesis, Helsinki Univ. of Technology, Espoo, Finland, 1994).
  32. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
    [CrossRef] [PubMed]
  33. D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
    [CrossRef] [PubMed]

2007 (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

2006 (2)

P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006).
[CrossRef]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).
[CrossRef]

W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005).
[CrossRef] [PubMed]

2004 (4)

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

2003 (5)

A. Alú and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

2002 (2)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

D. R. Fredkin and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (3)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1998 (2)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1993 (1)

1987 (1)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
[CrossRef] [PubMed]

1968 (1)

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968);V. Veselago V. and E. E. Narimanov, "The left hand of brightness: past, present and future of negative index materials," Nat. Mat. 5, 759-762 (2006).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Decoopman, T.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Derov, J.S.

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

Engheta, N.

A. Alú and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

Enoch, S.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Fan, S.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Fredkin, D. R.

D. R. Fredkin and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

Gralak, B.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Huang, Y.

P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006).
[CrossRef]

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Lu, W. T.

P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006).
[CrossRef]

P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).
[CrossRef]

W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005).
[CrossRef] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Lu, W.T.

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Maystre, D.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Mock, J. J.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Parimi, P. V.

P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).
[CrossRef]

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Ron, A.

D. R. Fredkin and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

Rye, P. M.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Sokoloff, J.

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Sridhar, S.

P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006).
[CrossRef]

W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005).
[CrossRef] [PubMed]

P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).
[CrossRef]

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Starr, A. F.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Tayeb, G.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Thomas, E. L.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Veselago, V.

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968);V. Veselago V. and E. E. Narimanov, "The left hand of brightness: past, present and future of negative index materials," Nat. Mat. 5, 759-762 (2006).
[CrossRef]

Vier, D. C.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
[CrossRef] [PubMed]

Vodo, P.

P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006).
[CrossRef]

P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).
[CrossRef]

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Yablonovitch, E.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

D. R. Fredkin and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005).
[CrossRef]

P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. Alú and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Nature (4)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Optics Express (1)

W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (3)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Phys. Rev. Lett. (7)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
[CrossRef] [PubMed]

Science (4)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968);V. Veselago V. and E. E. Narimanov, "The left hand of brightness: past, present and future of negative index materials," Nat. Mat. 5, 759-762 (2006).
[CrossRef]

Other (6)

J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton Univ. Press, Princeton, NJ, 1995).

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, Inc. 2003). p. 3.

W. T. Lu and S. Sridhar, unpublished.

Y. J. Huang, W. T. Lu, and S. Sridhar, "Alternative approach to all-angle negative refraction in two-dimensional photonic crystals," preprint: cond-mat/0703733 (2007).

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc. 1997).

E. Noponen, Electromagnetic Theory of Diffractive Optics (PhD thesis, Helsinki Univ. of Technology, Espoo, Finland, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Wave vector diagram for NR from corrugated surface with grating period as . The red semicircle is the equi-frequency surface (EFS) in the air while the blue circle is the EFS in the dielectric. Here k⃗i is the incident wave vector in the glass, k⃗ f is the refracted one of minus one order in the air. k⃗r ,0 and k⃗r ,−1 are the reflected wave vectors in the dielectric of the zero-th and -1 order, respectively. (b) Optical experiment demonstrating NR using a grism of size 2 cm with a grating density of 2400 lines/mm on the upper short surface. The He-Ne laser beam is normally incident to the hypotenuse. To visualize the beam path in air, the grism was placed inside a glass enclosure that was sparsely filled with smoke. The solid lines with arrows indicate the propagation of the beams inside the grism.

Fig. 2.
Fig. 2.

(a) Experimentally measured transmission efficiency of the negatively refracted beam through BK7 grism with 2400 lines/mm grating. Electric vector is parallel to the groove for 0° orientation (P-polarization) and perpendicular for 90° orientation of the polarizer. Calculated transmission efficiency of the S-polarization (b) and P-polarization (c) with incident angle π/4 for λ=532 nm through a lamellar grating on BK7 glass. The period of the lamellar grating has density 2400 lines/mm (as =416.7 nm).

Fig. 3.
Fig. 3.

Microwave experiment demonstration of NR by a polystyrene grism with surface grating period as=2 cm and incident angle θ=π/3 at 9 GHz. Plotted is the electric field (real part of the measured transmission coefficient S21). The solid arrows on the left indicate the incident direction of the microwave beam. The dashed line is the surface normal and the dashed arrow indicates the direction of propagation of the refracted beam.

Fig. 4.
Fig. 4.

Demonstration of plano-concave grating lens focusing. (a) Composite figure of the microwave focusing experiment at 8.4 GHz using a plano-concave grating lens made of alumina with a grating on the curved surface. On the left the electric field of the incident beam measured without the presence of the grating lens is plotted. On the right the intensity of the electric field is plotted. In the middle is a photo of the lens. The grating lens behaves like a smooth plano-concave lens made of negative index material with n eff=−0.57 at 8.4 GHz. (b) FDTD simulations at plano-concave lens without aberration made with n=3, R=15 cm, and a=1 cm at 8.5 GHz. Plotted is the electric field. The size of the system is in cm. (c) Details of the plano-concave lens (shown half). The dashed curve is an ellipse with semimajor 15 cm and semiminor 12.73 cm. The horizontal distance of the grooves is 1cm.

Fig. 5.
Fig. 5.

AANR using surface grating. (a) A slab of 1D multilayer PC of lattice spacing a, with surface grating as on both surfaces. The surface grating gives rise to NR for the 1D PC operating within the band gap. (b) Illustration of NR using surface grating. The EFS of E-polarized modes in a 1D PC made of alumina bars with lattice spacing a=0.9 cm, bar thickness d=0.5 cm at 6.85 GHz is shown as the blue curves. The green semicircle is the corresponding EFS in the air.

Fig. 6.
Fig. 6.

(a) Experimental demonstration of negative lateral shift by a 1D PC with a surface grating, at 6.96 GHz. A 5.6 cm negative lateral shift was observed. The 1D PC is made of 6 layers of alumina bars with width d=0.5 cm and spacing a=1 cm. The surface grating was formed by rods of the same material, alumina, with diameter 0.63 cm and spacing as =1.8 cm. The width of the incident beam is 10 cm and the incident angle is 13.5°. The incident and outgoing beams are plotted as the real part of the measured transmission coefficient S 21. (b) Positive lateral shift for a microwave beam at 6.96 GHz by a slab of polystyrene with thickness 7.5 cm.

Fig. 7.
Fig. 7.

FDTD simulation of negative lateral shift of microwave beams through a grated 1D PC as specified in Fig. 6 at 6.96 GHz. (a) Microwave beam with incident angle 13.5°. (b) Microwave beam with incident angle 30°. The arrows indicate the energy flows of the incident and refracted beams. The unit length is in meters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff = n λ ( a s sin θ )
n eff = n λ a

Metrics